NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jae Q. J. Liu; Kelvin T. K. Hui; Fadi Al Zoubi; Zing Z. X. Zhou; Dino Samartzis; Curtis C. H. Yu; Jeremy R. Chang; Arnold Y. L. Wong – International Journal for Educational Integrity, 2024
The application of artificial intelligence (AI) in academic writing has raised concerns regarding accuracy, ethics, and scientific rigour. Some AI content detectors may not accurately identify AI-generated texts, especially those that have undergone paraphrasing. Therefore, there is a pressing need for efficacious approaches or guidelines to…
Descriptors: Artificial Intelligence, Investigations, Identification, Human Factors Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Katie Lai – College & Research Libraries, 2023
To explore whether artificial intelligence can be used to enhance library services, this study used ChatGPT to answer reference questions. An assessment rubric was used to evaluate how well ChatGPT handled different question types and difficulty levels. Overall ChatGPT's performance was fair, but it did poorly in information accuracy. It scored…
Descriptors: Artificial Intelligence, Technology Uses in Education, Library Services, Reference Services
Peer reviewed Peer reviewed
Direct linkDirect link
Rybinski, Krzysztof; Kopciuszewska, Elzbieta – Assessment & Evaluation in Higher Education, 2021
This article presents the first-ever big data study of the student evaluation of teaching (SET) using artificial intelligence (AI). We train natural language processing (NLP) models on 1.6 million student evaluations from the US and the UK. We address two research questions: (1) are these models able to predict student ratings from the student…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation of Teacher Performance, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mihai Dascalu; Scott A. Crossley; Danielle S. McNamara; Philippe Dessus; Stefan Trausan-Matu – Grantee Submission, 2018
A critical task for tutors is to provide learners with suitable reading materials in terms of difficulty. The challenge of this endeavor is increased by students' individual variability and the multiple levels in which complexity can vary, thus arguing for the necessity of automated systems to support teachers. This chapter describes…
Descriptors: Reading Materials, Difficulty Level, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Alexopoulou, Theodora; Michel, Marije; Murakami, Akira; Meurers, Detmar – Language Learning, 2017
Large-scale learner corpora collected from online language learning platforms, such as the EF-Cambridge Open Language Database (EFCAMDAT), provide opportunities to analyze learner data at an unprecedented scale. However, interpreting the learner language in such corpora requires a precise understanding of tasks: How does the prompt and input of a…
Descriptors: Linguistics, Accuracy, Natural Language Processing, Linguistic Performance
Peer reviewed Peer reviewed
Direct linkDirect link
Klein, Ariel; Badia, Toni – Journal of Creative Behavior, 2015
In this study we show how complex creative relations can arise from fairly frequent semantic relations observed in everyday language. By doing this, we reflect on some key cognitive aspects of linguistic and general creativity. In our experimentation, we automated the process of solving a battery of Remote Associates Test tasks. By applying…
Descriptors: Language Usage, Semantics, Natural Language Processing, Test Items