NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Oh, Hanna; Beck, Jeffrey M.; Zhu, Pingping; Sommer, Marc A.; Ferrari, Silvia; Egner, Tobias – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through "satisficing," fast but "good-enough" heuristic decision making that prioritizes some sources of…
Descriptors: Decision Making, Cues, Cognitive Processes, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Lawrence; Pearl, Lisa – Cognitive Science, 2015
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…
Descriptors: Language Acquisition, Models, Computational Linguistics, Credibility
Martori, Francesc; Cuadros, Jordi; González-Sabaté, Lucinio – International Educational Data Mining Society, 2015
Student modeling can help guide the behavior of a cognitive tutor system and provide insight to researchers on understanding how students learn. In this context, Bayesian Knowledge Tracing (BKT) is one of the most popular knowledge inference models due to its predictive accuracy, interpretability and ability to infer student knowledge. However,…
Descriptors: Bayesian Statistics, Inferences, Prediction, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Joseph J.; Griffiths, Thomas L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2013
Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…
Descriptors: Experimental Psychology, Bias, Misconceptions, Statistical Analysis
Zhu, Shizhuo – ProQuest LLC, 2010
Clinical decision-making is challenging mainly because of two factors: (1) patient conditions are often complicated with partial and changing information; (2) people have cognitive biases in their decision-making and information-seeking. Consequentially, misdiagnoses and ineffective use of resources may happen. To better support clinical…
Descriptors: Medical Evaluation, Clinical Diagnosis, Decision Making, Bayesian Statistics