NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeonggeon Lee; Xiaoming Zhai – TechTrends: Linking Research and Practice to Improve Learning, 2025
Educators and researchers have analyzed various image data acquired from teaching and learning, such as images of learning materials, classroom dynamics, students' drawings, etc. However, this approach is labour-intensive and time-consuming, limiting its scalability and efficiency. The recent development in the Visual Question Answering (VQA)…
Descriptors: Artificial Intelligence, Computer Software, Teaching Methods, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Gloria Ashiya Katuka – ProQuest LLC, 2024
Dialogue act (DA) classification plays an important role in understanding, interpreting and modeling dialogue. Dialogue acts (DAs) represent the intended meaning of an utterance, which is associated with the illocutionary force (or the speaker's intention), such as greetings, questions, requests, statements, and agreements. In natural language…
Descriptors: Dialogs (Language), Classification, Intention, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Fabian Kieser; Peter Wulff; Jochen Kuhn; Stefan Küchemann – Physical Review Physics Education Research, 2023
Generative AI technologies such as large language models show novel potential to enhance educational research. For example, generative large language models were shown to be capable of solving quantitative reasoning tasks in physics and concept tests such as the Force Concept Inventory (FCI). Given the importance of such concept inventories for…
Descriptors: Physics, Science Instruction, Artificial Intelligence, Computer Software
Tsiola, Anna – ProQuest LLC, 2021
Naturalistic language learning is contextually grounded. When people learn their first (L1) and often their second (L2) language, they do so in various contexts. In this dissertation I examine the effect of various contexts on language development. Part 1 describes the effects of textual, linguistic context in reading. I employed an eye-tracking…
Descriptors: Natural Language Processing, Second Language Learning, Language Processing, Language Acquisition