Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Author
Allen, Laura K. | 1 |
McNamara, Danielle S. | 1 |
Mills, Caitlin | 1 |
Nahatame, Shingo | 1 |
Perret, Cecile | 1 |
Tsiola, Anna | 1 |
Publication Type
Reports - Research | 2 |
Dissertations/Theses -… | 1 |
Journal Articles | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Nahatame, Shingo – Language Learning, 2021
Although text readability has traditionally been measured based on simple linguistic features, recent studies have employed natural language processing techniques to develop new readability formulas that better represent theoretical accounts of reading processes. This study evaluated the construct validity of different readability formulas,…
Descriptors: Readability, Natural Language Processing, Readability Formulas, Reading Processes
Tsiola, Anna – ProQuest LLC, 2021
Naturalistic language learning is contextually grounded. When people learn their first (L1) and often their second (L2) language, they do so in various contexts. In this dissertation I examine the effect of various contexts on language development. Part 1 describes the effects of textual, linguistic context in reading. I employed an eye-tracking…
Descriptors: Natural Language Processing, Second Language Learning, Language Processing, Language Acquisition
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods