NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
McQuillan, Jeff; Ediger, Warren – Reading Matrix: An International Online Journal, 2018
There is considerable evidence that incidental vocabulary acquisition through reading accounts for a large portion of the growth in word knowledge for both first (L1) and second (L2) language acquirers. In this paper, we evaluate the Markov Estimate of Semantic Association (MESA) technique for detecting small, incremental gains in vocabulary…
Descriptors: Markov Processes, Vocabulary Development, Incidental Learning, Native Language
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Chun; Fan, Zhewen; Chang, Hua-Hua; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2013
The item response times (RTs) collected from computerized testing represent an underutilized type of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. Current models for RTs mainly focus on parametric models, which have the…
Descriptors: Reaction Time, Computer Assisted Testing, Test Items, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval