NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Donoghue, Thomas; Voytek, Bradley; Ellis, Shannon E. – Journal of Statistics and Data Science Education, 2021
Nolan and Temple Lang's "Computing in the Statistics Curricula" (2010) advocated for a shift in statistical education to broadly include computing. In the time since, individuals with training in both computing and statistics have become increasingly employable in the burgeoning data science field. In response, universities have…
Descriptors: Statistics Education, Teaching Methods, Computation, Curriculum Design
Sharma, Kshitij; Jermann, Patrick; Dillenbourg, Pierre – International Educational Data Mining Society, 2015
Current schemes to categorise MOOC students result from a single view on the population which either contains the engagement of the students or demographics or self reported motivation. We propose a new hierarchical student categorisation, which uses common online activities capturing both engagement and achievement of MOOC students. A first level…
Descriptors: Foreign Countries, Online Courses, Large Group Instruction, Student Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Hew, Khe Foon – British Journal of Educational Technology, 2016
Although past research has sought to identify the factors of student engagement in traditional online courses, two questions remained largely unanswered with regard to Massive Open Online Courses (MOOCs): do the factors that could influence student engagement in traditional online courses also apply to online courses that are massive and open?…
Descriptors: Online Courses, Learner Engagement, Large Group Instruction, Learning Experience
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis