ERIC Number: EJ1420299
Record Type: Journal
Publication Date: 2024
Pages: 10
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1091-367X
EISSN: EISSN-1532-7841
Available Date: N/A
A Machine Learning Approach for Physical Activity Recognition in Cystic Fibrosis
Mayara S. Bianchim; Melitta A. McNarry; Alan R. Barker; Craig A. Williams; Sarah Denford; Lena Thia; Rachel Evans; Kelly A. Mackintosh
Measurement in Physical Education and Exercise Science, v28 n2 p172-181 2024
This study aimed to develop and validate machine learning models to predict intensities in children and adolescents with cystic fibrosis (CF) across different accelerometry brands and placements. Thirty-five children and adolescents with CF (11.6 ± 2.8 yrs; 15 girls) and 28 healthy youth (12.2 ± 2.7 yrs; 16 girls) performed six activities whilst wearing GENEActivs (both wrists) and ActiGraphs GT9X (both wrists and waist). Three supervised learning classifiers (K-Nearest Neighbour, Random Forest and eXtreme Gradient Boosted Decision Tree) were used to identify the input signal pattern for each PA type and intensity, with a 10-fold cross-validation utilized to assess the performance of the classifiers. ActiGraph GT9X on the dominant wrist and waist and GENEActiv on the dominant wrist failed to predict vigorous intensity PA activities. All other models, for activity type and intensities, exceeded 97% accuracy, with a sensitivity and specificity of greater than 95%, irrespective of accelerometer brand, placement or health condition. [This paper was written on behalf of ActiveYouth SRC group.]
Descriptors: Models, Prediction, Children, Adolescents, Diseases, Measurement Equipment, Physical Activities, Genetic Disorders, Exercise, Artificial Intelligence
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A