Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 30 |
Descriptor
Algebra | 42 |
Mathematical Formulas | 42 |
Numbers | 30 |
Mathematics Instruction | 24 |
Number Concepts | 15 |
Mathematical Concepts | 14 |
Mathematics | 13 |
Teaching Methods | 12 |
Equations (Mathematics) | 10 |
Mathematical Logic | 10 |
Mathematics Education | 10 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 36 |
Reports - Descriptive | 24 |
Reports - Research | 7 |
Reports - Evaluative | 4 |
Tests/Questionnaires | 3 |
Books | 2 |
Guides - General | 2 |
Numerical/Quantitative Data | 2 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 5 |
Secondary Education | 5 |
Elementary Secondary Education | 2 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
Audience
Practitioners | 2 |
Teachers | 2 |
Location
Australia | 2 |
Indonesia | 1 |
Iran | 1 |
North Korea | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Herzinger, K.; Kunselman, C.; Pierce, I. – International Journal of Mathematical Education in Science and Technology, 2018
Theon's ladder is an ancient method for easily approximating "n"th roots of a real number "k." Previous work in this area has focused on modifying Theon's ladder to approximate roots of quadratic polynomials. We extend this work using techniques from linear algebra. We will show that a ladder associated to the quadratic…
Descriptors: Algebra, Mathematics Instruction, Mathematical Formulas, Mathematics
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2018
Let R be an integral domain with quotient field F, let S be a non-empty subset of R and let n = 2 be an integer. If there exists a rational function ?: S [right arrow] F such that ?(a)[superscript n] = a for all a ? S, then S is finite. As a consequence, if F is an ordered field (for instance,[real numbers]) and S is an open interval in F, no such…
Descriptors: Numbers, Mathematics Instruction, Algebra, Mathematical Formulas
Kontorovich, Igor' – Educational Studies in Mathematics, 2018
This article is concerned with cognitive aspects of students' struggles in situations in which familiar concepts are reconsidered in a new mathematical domain. Examples of such cross-curricular concepts are divisibility in the domain of integers and in the domain of polynomials, multiplication in the domain of numbers and in the domain of vectors,…
Descriptors: Mathematics Instruction, Mathematical Concepts, Mathematical Formulas, Algebra
International Electronic Journal of Mathematics Education, 2018
This paper discusses a proposal for exploration and verification of numerical and algebraic behavior correspondingly to Generalized Fibonacci model. Thus, it develops a special attention to the class of Fibonacci quaternions and Fibonacci octonions and with this assumption, the work indicates an investigative and epistemological route, with…
Descriptors: Professional Personnel, Mathematics Instruction, Mathematical Models, Mathematical Formulas
Cereceda, José Luis – International Journal of Mathematical Education in Science and Technology, 2017
In this note, we revisit the problem of polynomial interpolation and explicitly construct two polynomials in n of degree k + 1, P[subscript k](n) and Q[subscript k](n), such that P[subscript k](n) = Q[subscript k](n) = f[subscript k](n) for n = 1, 2,… , k, where f[subscript k](1), f[subscript k](2),… , f[subscript k](k) are k arbitrarily chosen…
Descriptors: Algebra, Mathematical Formulas, Numbers, Mathematics
Alves, Francisco Regis Vieira; Catarino, Paula Maria Machado Cruz – Acta Didactica Napocensia, 2016
The current research around the Fibonacci's and Lucas' sequence evidences the scientific vigor of both mathematical models that continue to inspire and provide numerous specializations and generalizations, especially from the sixties. One of the current of research and investigations around the Generalized Sequence of Lucas, involves it's…
Descriptors: Mathematical Models, Numbers, Algebra, Mathematical Formulas
Gordon, Sheldon P.; Yang, Yajun – International Journal of Mathematical Education in Science and Technology, 2017
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
Descriptors: Mathematical Formulas, Algebra, Mathematics Activities, Error of Measurement
Alves, Francisco Regis Vieira – Acta Didactica Napocensia, 2016
Admittedly, the study of Complex Analysis (CA) requires of the student considerable mental effort characterized by the mobilization of a related thought to the complex mathematical concepts. Thus, with the aid of the dynamic system Geogebra, we discuss in this paper a particular concept in CA. In fact, the notion of winding number v[f(gamma),P] =…
Descriptors: Mathematical Concepts, Concept Teaching, Geometric Concepts, Geometry
Khosroshahi, Leyla G.; Asghari, Amir H. – Australian Primary Mathematics Classroom, 2016
There is a call for enabling students to use a range of efficient mental and written strategies when solving addition and subtraction problems. To do so, students should recognise numerical structures and be able to change a problem to an equivalent problem. The purpose of this article is to suggest an activity to facilitate such understanding in…
Descriptors: Arithmetic, Addition, Subtraction, Problem Solving
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2012
It is proved that an integer n [greater than or equal] 2 is a prime (resp., composite) number if and only if there exists exactly one (resp., more than one) nth-degree monic polynomial f with coefficients in Z[subscript n], the ring of integers modulo n, such that each element of Z[subscript n] is a root of f. This classroom note could find use in…
Descriptors: Introductory Courses, Number Concepts, Numbers, Algebra
Bardell, Nicholas S. – Australian Senior Mathematics Journal, 2015
Traditionally, "z" is assumed to be a complex number and the roots are usually determined by using de Moivre's theorem adapted for fractional indices. The roots are represented in the Argand plane by points that lie equally pitched around a circle of unit radius. The "n"-th roots of unity always include the real number 1, and…
Descriptors: Mathematics, Equations (Mathematics), Numbers, Algebra
Bardell, Nicholas S. – Australian Senior Mathematics Journal, 2014
This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…
Descriptors: Equations (Mathematics), Mathematics, Foreign Countries, Mathematical Concepts
Yantz. Jennifer – Mid-Western Educational Researcher, 2013
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting students' postsecondary success as STEM majors. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. In the present study, the connections…
Descriptors: Undergraduate Students, Algebra, Mathematical Formulas, Numbers
Dana-Picard, Thierry; Zeitoun, David G. – International Journal of Mathematical Education in Science and Technology, 2012
We present a sequence of improper integrals, for which a closed formula can be computed using Wallis formula and a non-straightforward recurrence formula. This yields a new integral presentation for Catalan numbers.
Descriptors: Mathematical Formulas, Numbers, Mathematics Instruction, Teaching Methods
Vaninsky, Alexander – International Journal of Mathematical Education in Science and Technology, 2011
This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos--satisfying an axiom sin[superscript 2] + cos[superscript 2] = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two…
Descriptors: Trigonometry, Mathematics Instruction, Algebra, Mathematical Applications