NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Mislevy, Robert J. – 1983
Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…
Descriptors: Algorithms, Estimation (Mathematics), Latent Trait Theory, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Mislevy, Robert J. – Psychometrika, 1986
This article describes a Bayesian framework for estimation in item response models, with two-stage distributions on both item and examinee populations. Strategies for point and interval estimation are discussed, and a general procedure based on the EM algorithm is presented. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Peer reviewed Peer reviewed
Mislevy, Robert J.; Verhelst, Norman – Psychometrika, 1990
A model is presented for item responses when different subjects use different strategies, but only responses--not choice of strategy--can be observed. Substantive theory is used to differentiate the likelihoods of response vectors under a fixed set of strategies, and response probabilities are modeled via item parameters for each strategy. (TJH)
Descriptors: Algorithms, Guessing (Tests), Item Response Theory, Mathematical Models
Mislevy, Robert J. – 1985
Simultaneous estimation of many parameters can often be improved, sometimes dramatically so, if it is reasonable to consider one or more subsets of parameters as exchangeable members of corresponding populations. While each observation may provide limited information about the parameters it is modeled directly in terms of, it also contributes…
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Mislevy, Robert J. – 1985
A method for drawing inferences from complex samples is based on Rubin's approach to missing data in survey research. Standard procedures for drawing such inferences do not apply when the variables of interest are not observed directly, but must be inferred from secondary random variables which depend on the variables of interest stochastically.…
Descriptors: Algorithms, Data Interpretation, Estimation (Mathematics), Latent Trait Theory