NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Crimmins, Patricia Beron; Foster, Jonathan K.; Youngs, Peter A. – AERA Online Paper Repository, 2023
Recent research suggests that neural networks, algorithms designed to reflect the human brain's behavior to recognize patterns, can be used to develop data dashboards that provide teachers with more specific and frequent feedback to improve their instruction (Jacobs et al., 2022). This qualitative case study examines six teachers' perceptions of…
Descriptors: Artificial Intelligence, Algorithms, Teacher Attitudes, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Shernoff, David J. – AERA Online Paper Repository, 2023
In this paper, we report the results of a 3-year, quasi-experimental study comparing students' engagement and deep learning of course materials between students who took an undergraduate engineering course that used a video game approach to a control group. The video game, EduTorcs, provided challenges in which students devised control algorithms…
Descriptors: Learner Engagement, Undergraduate Students, Engineering Education, Video Games
Peer reviewed Peer reviewed
Direct linkDirect link
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
González-Esparza, Lydia Marion; Jin, Hao-Yue; Lu, Chang; Cutumisu, Maria – AERA Online Paper Repository, 2022
Detecting wheel-spinning behaviors of students who interact with an Intelligent Tutoring System (ITS) is important for generating pertinent and effective feedback and developing more enriching learning experiences. This analysis compares decision tree and bagged tree models of student productive persistence (i.e., mastering a skill) using the…
Descriptors: Student Behavior, Intelligent Tutoring Systems, Feedback (Response), Persistence