Publication Date
In 2025 | 0 |
Since 2024 | 20 |
Since 2021 (last 5 years) | 32 |
Since 2016 (last 10 years) | 32 |
Since 2006 (last 20 years) | 32 |
Descriptor
Source
Interactive Learning… | 33 |
Author
Xia, Xiaona | 3 |
Wanli Xing | 2 |
A. I. Makinde | 1 |
Aammou, Souhaib | 1 |
Al Kurdi, Barween | 1 |
Al-Emran, Mostafa | 1 |
Ali Darejeh | 1 |
Alshurideh, Muhammad | 1 |
Amisha Jindal | 1 |
Amit Kumar Thakur | 1 |
Andrew Kwok-Fai Lui | 1 |
More ▼ |
Publication Type
Journal Articles | 33 |
Reports - Research | 28 |
Reports - Descriptive | 3 |
Information Analyses | 2 |
Reports - Evaluative | 2 |
Opinion Papers | 1 |
Education Level
Audience
Location
China | 2 |
India | 1 |
Japan | 1 |
Massachusetts (Boston) | 1 |
Slovenia | 1 |
Taiwan | 1 |
Tanzania | 1 |
Thailand | 1 |
United Arab Emirates | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jaiteg Singh; Nandini Modi – Interactive Learning Environments, 2024
Eye gaze tracking has recently become indispensable for domains like virtual reality, augmented reality, human-computer interaction and advertisement. The commercial eye gaze tracking equipment is too expensive to be used by the masses. In this manuscript, a non-invasive, low-resolution ordinary camera-based system has been proposed for tracking…
Descriptors: Eye Movements, Attention, Validity, College Students
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Xiaona Xia – Interactive Learning Environments, 2023
Effective analysis and demonstration of these data features is of great significance for the optimization of interactive learning environment and learning behavior. Therefore, we take the big data set of learning behavior generated by an online interactive learning environment as the research object, define the features of learning behavior, and…
Descriptors: Learning Strategies, Interaction, Educational Environment, Learning Analytics
Jing Chen; Ruiqi Wang; Bei Fang; Chen Zuo – Interactive Learning Environments, 2024
Online learning has developed rapidly and billions of learners have participated in various courses. However, the high dropout rate is universal and learning performance is not satisfactory. Fortunately, learners have posted a large number of reviews which express their feedback opinions. The fine-grained aspects and opinions existing in reviews…
Descriptors: Online Courses, Feedback (Response), Opinions, Algorithms
Andrew Kwok-Fai Lui; Sin-Chun Ng; Stella Wing-Nga Cheung – Interactive Learning Environments, 2024
The technology of automated short answer grading (ASAG) can efficiently process answers according to human-prepared grading examples. Computer-assisted acquisition of grading examples uses a computer algorithm to sample real student responses for potentially good examples. The process is critical for optimizing the grading accuracy of machine…
Descriptors: Grading, Computer Uses in Education, Educational Technology, Artificial Intelligence
Hanxiang Du; Wanli Xing; Bo Pei – Interactive Learning Environments, 2023
Participating in online communities has significant benefits to students learning in terms of students' motivation, persistence, and learning outcomes. However, maintaining and supporting online learning communities is very challenging and requires tremendous work. Automatic support is desirable in this situation. The purpose of this work is to…
Descriptors: Electronic Learning, Communities of Practice, Automation, Artificial Intelligence
Hassan Kilavo; Tabu S. Kondo; Feruzi Hassan – Interactive Learning Environments, 2024
Today computing is intricate in all aspects of our lives, beginning with communications and education to banking, information security, health, shopping, and social media. Development of the computing is proportional to the development of software which is becoming a serious part of all daily lives. This paper, therefore, assessed the impact of…
Descriptors: Foreign Countries, Computer Science Education, Elementary School Students, Outcomes of Education
J. Pablo Rosas Baldazo; Yasmín Á. Ríos-Solís; Romeo Sánchez Nigenda – Interactive Learning Environments, 2024
Learning path generation involves the computation of learning trajectories to personalize academic instruction to prevent school problems. The Educational Planning Problem (EPP) considers generating personalized learning paths by scheduling activities that satisfy expected grades while minimizing plans makespan. In this work, we propose two…
Descriptors: Study Habits, Scheduling, Time Management, Computer Software
Mark Johnson; Rafiq Saleh – Interactive Learning Environments, 2024
Educational assessment is inherently uncertain, where physiological, psychological and social factors play an important role in establishing judgements which are assumed to be "absolute". AI and other algorithmic approaches to grading of student work strip-out uncertainty, leading to a lack of inspectability in machine judgement and…
Descriptors: Artificial Intelligence, Evaluation Methods, Technology Uses in Education, Man Machine Systems
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Chenglu Li; Wanli Xing; Walter Leite – Interactive Learning Environments, 2024
As instruction shifts away from traditional approaches, online learning has grown in popularity in K-12 and higher education. Artificial intelligence (AI) and learning analytics methods such as machine learning have been used by educational scholars to support online learners on a large scale. However, the fairness of AI prediction in educational…
Descriptors: Artificial Intelligence, Prediction, Mathematics Achievement, Algorithms
MOOC Student Dropout Prediction Model Based on Learning Behavior Features and Parameter Optimization
Jin, Cong – Interactive Learning Environments, 2023
Since the advent of massive open online courses (MOOC), it has been the focus of educators and learners around the world, however the high dropout rate of MOOC has had a serious negative impact on its popularity and promotion. How to effectively predict students' dropout status in MOOC for early intervention has become a hot topic in MOOC…
Descriptors: MOOCs, Potential Dropouts, Prediction, Models
Kanwal Zahoor; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
Mobile application developers rely largely on user reviews for identifying issues in mobile applications and meeting the users' expectations. User reviews are unstructured, unorganized and very informal. Identifying and classifying issues by extracting required information from reviews is difficult due to a large number of reviews. To automate the…
Descriptors: Artificial Intelligence, Computer Oriented Programs, Courseware, Learning Processes
Xia, Xiaona – Interactive Learning Environments, 2023
Learning interaction activities are the key part of tracking and evaluating learning behaviors, that plays an important role in data-driven autonomous learning and optimized learning in interactive learning environments. In this study, a big data set of learning behaviors with multiple learning periods is selected. According to the instance…
Descriptors: Behavior, Learning Processes, Electronic Learning, Algorithms
Benmesbah, Ouissem; Lamia, Mahnane; Hafidi, Mohamed – Interactive Learning Environments, 2023
Adaptive learning has garnered researchers' interest. The main issue within this field is how to select appropriate learning objects (LOs) based on learners' requirements and context, and how to combine the selected LOs to form what is known as an adaptive learning path. Heuristic and metaheuristic approaches have achieved significant progress on…
Descriptors: Algorithms, Teaching Methods, Educational Innovation, Genetics