Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Algorithms | 4 |
Artificial Intelligence | 3 |
Barriers | 2 |
Technology Uses in Education | 2 |
Access to Computers | 1 |
Bias | 1 |
Classification | 1 |
Coding | 1 |
Computer Assisted Instruction | 1 |
Computer Software | 1 |
Data Use | 1 |
More ▼ |
Source
Smart Learning Environments | 4 |
Author
Abdullahi Yusuf | 1 |
Dai, Yiling | 1 |
Flanagan, Brendan | 1 |
Huang, Anna Y. Q. | 1 |
Lin, Chien-Chang | 1 |
Lu, Owen H. T. | 1 |
Mohammed Saqr | 1 |
Nakamoto, Ryosuke | 1 |
Norah Md Noor | 1 |
Ogata, Hiroaki | 1 |
Sonsoles López-Pernas | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Information Analyses | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Abdullahi Yusuf; Norah Md Noor – Smart Learning Environments, 2024
In recent years, programming education has gained recognition at various educational levels due to its increasing importance. As the need for problem-solving skills becomes more vital, researchers have emphasized the significance of developing algorithmic thinking (AT) skills to help students in program development and error debugging. Despite the…
Descriptors: Students, Programming, Algorithms, Problem Solving
Why Explainable AI May Not Be Enough: Predictions and Mispredictions in Decision Making in Education
Mohammed Saqr; Sonsoles López-Pernas – Smart Learning Environments, 2024
In learning analytics and in education at large, AI explanations are always computed from aggregate data of all the students to offer the "average" picture. Whereas the average may work for most students, it does not reflect or capture the individual differences or the variability among students. Therefore, instance-level…
Descriptors: Artificial Intelligence, Decision Making, Predictor Variables, Feedback (Response)
Yamauchi, Taisei; Flanagan, Brendan; Nakamoto, Ryosuke; Dai, Yiling; Takami, Kyosuke; Ogata, Hiroaki – Smart Learning Environments, 2023
In recent years, smart learning environments have become central to modern education and support students and instructors through tools based on prediction and recommendation models. These methods often use learning material metadata, such as the knowledge contained in an exercise which is usually labeled by domain experts and is costly and…
Descriptors: Mathematics Instruction, Classification, Algorithms, Barriers
Lin, Chien-Chang; Huang, Anna Y. Q.; Lu, Owen H. T. – Smart Learning Environments, 2023
Sustainable education is a crucial aspect of creating a sustainable future, yet it faces several key challenges, including inadequate infrastructure, limited resources, and a lack of awareness and engagement. Artificial intelligence (AI) has the potential to address these challenges and enhance sustainable education by improving access to quality…
Descriptors: Artificial Intelligence, Educational Technology, Sustainability, Technology Uses in Education