Publication Date
In 2025 | 2 |
Since 2024 | 35 |
Since 2021 (last 5 years) | 69 |
Since 2016 (last 10 years) | 73 |
Since 2006 (last 20 years) | 73 |
Descriptor
Algorithms | 127 |
Classification | 127 |
Artificial Intelligence | 39 |
Information Retrieval | 26 |
Prediction | 24 |
Models | 20 |
Accuracy | 19 |
Learning Analytics | 17 |
Foreign Countries | 13 |
Comparative Analysis | 12 |
Automation | 11 |
More ▼ |
Source
Author
White, Lee J. | 3 |
Sangjin Kim | 2 |
Sijia Huang | 2 |
Yu, Clement T. | 2 |
A. I. Makinde | 1 |
Abdullahi Yusuf | 1 |
Adam Fleischhacker | 1 |
Aissaoui, Karima | 1 |
Alanah Grant St. James | 1 |
Alexander von Eye | 1 |
Altmann, G. | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 21 |
Postsecondary Education | 21 |
Elementary Education | 7 |
Early Childhood Education | 3 |
Middle Schools | 3 |
Primary Education | 3 |
Secondary Education | 3 |
Grade 2 | 2 |
Junior High Schools | 2 |
Grade 3 | 1 |
Grade 6 | 1 |
More ▼ |
Audience
Researchers | 7 |
Practitioners | 2 |
Teachers | 2 |
Location
Massachusetts (Boston) | 2 |
South Korea | 2 |
Turkey | 2 |
China | 1 |
Delaware | 1 |
Estonia | 1 |
Ghana | 1 |
Netherlands | 1 |
Pennsylvania (Philadelphia) | 1 |
Texas | 1 |
Thailand | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
Eysenck Personality Inventory | 1 |
Program for International… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Jedediyah Williams – Mathematics Teacher: Learning and Teaching PK-12, 2024
Email filters classify new messages as either spam or not spam based on word frequency, syntax, and metadata. A "classifier" is an algorithm that maps input data into categories based on distinguishing characteristics, or "features." Features can be raw data or attributes derived from that data. "Feature engineering"…
Descriptors: Classification, Engineering, Numbers, Algorithms
Joemari Olea; Kevin Carl Santos – Journal of Educational and Behavioral Statistics, 2024
Although the generalized deterministic inputs, noisy "and" gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that…
Descriptors: Cognitive Measurement, Models, Algorithms, Simulation
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Susan Smith; Neil Sutherland; David Allen – Teaching in Higher Education, 2024
Higher education systems exhibit varying degrees of heterogeneity in approaches to undergraduate degree classification -- specifically for this Point of Departure: the wide variety of 'Degree Classification Algorithms' (DCAs) used to calculate students' final awards. To date, the impact of DCA variation remains an under-researched 'black box', and…
Descriptors: Academic Degrees, Classification, Algorithms, Higher Education
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
He, Dan – ProQuest LLC, 2023
This dissertation examines the effectiveness of machine learning algorithms and feature engineering techniques for analyzing process data and predicting test performance. The study compares three classification approaches and identifies item-specific process features that are highly predictive of student performance. The findings suggest that…
Descriptors: Artificial Intelligence, Data Analysis, Algorithms, Classification
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Erickson, Tim; Engel, Joachim – Teaching Statistics: An International Journal for Teachers, 2023
This volume is largely about nontraditional data; this paper is about a nontraditional visualization: classification trees. Using trees with data will be new to many students, so rather than beginning with a computer algorithm that produces optimal trees, we suggest that students first construct their own trees, one node at a time, to explore how…
Descriptors: Classification, Data Analysis, Visual Aids, Learning Activities
Amane, Meryem; Aissaoui, Karima; Berrada, Mohammed – International Journal of Information and Learning Technology, 2023
Purpose: Together, learning objects (LOs) and e-pedagogical practices have the potential to improve the performance of e-learning systems in several ways. They can make e-learning more personalised and adaptable, providing students with a more engaging and effective learning experience. Design/methodology/approach: The development of LOs and…
Descriptors: Electronic Learning, Resource Units, Metadata, Algorithms
Mo, Yuji – ProQuest LLC, 2022
The research in this dissertation consists of two parts: An active learning algorithm for hierarchical labels and an embedding-based retrieval algorithm. In the first part, we present a new approach for learning hierarchically decomposable concepts. The approach learns a high-level classifier (e.g., location vs. non-location) by separately…
Descriptors: Active Learning, Algorithms, Classification, Models
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Eeshan Hasan; Erik Duhaime; Jennifer S. Trueblood – Cognitive Research: Principles and Implications, 2024
A crucial bottleneck in medical artificial intelligence (AI) is high-quality labeled medical datasets. In this paper, we test a large variety of wisdom of the crowd algorithms to label medical images that were initially classified by individuals recruited through an app-based platform. Individuals classified skin lesions from the International…
Descriptors: Algorithms, Human Body, Classification, Knowledge Level
Quan, Zhi; Pu, Luoxi – Education and Information Technologies, 2023
In the face of surging online education around the globe, it seems quite necessary and helpful for learners and teachers to have the plethora of online resources well sorted out beforehand. To some extent, the efficiency and accuracy of resource search and retrieval may determine the quality and influence of online education. In this research,…
Descriptors: Accuracy, Classification, Internet, Open Educational Resources
Horvath, Kenneth; Steinberg, Mario – Learning, Media and Technology, 2023
Allowing learners to move across learning contexts in novel ways, digital tools play an increasingly central role for the formation of learning trajectories and identities. They thus presumably also affect dynamics of social sorting in education. Against this background, this article introduces a conceptual framework for unravelling dynamics of…
Descriptors: Educational Technology, Technology Uses in Education, Electronic Learning, Learning Trajectories