NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sourajit Ghosh; Md. Sarwar Kamal; Linkon Chowdhury; Biswarup Neogi; Nilanjan Dey; Robert Simon Sherratt – Education and Information Technologies, 2024
Students are the future of a nation. Personalizing student interests in higher education courses is one of the biggest challenges in higher education. Various AI and ML approaches have been used to study student behaviour. Existing AI and ML algorithms are used to identify features for various fields, such as behavioural analysis, economic…
Descriptors: Engineering Education, Artificial Intelligence, College Students, Student Interests
Peer reviewed Peer reviewed
Direct linkDirect link
Lorena S. Grundy; Milo D. Koretsky – Journal of Engineering Education, 2025
Background: Metacognitive processes have been linked to the development of conceptual knowledge in STEM courses, but previous work has centered on the regulatory aspects of metacognition. Purpose: We interrogated the relationship between epistemic metacognition and conceptual knowledge in engineering statics courses across six universities by…
Descriptors: Epistemology, Metacognition, Cognitive Processes, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Shernoff, David J. – AERA Online Paper Repository, 2023
In this paper, we report the results of a 3-year, quasi-experimental study comparing students' engagement and deep learning of course materials between students who took an undergraduate engineering course that used a video game approach to a control group. The video game, EduTorcs, provided challenges in which students devised control algorithms…
Descriptors: Learner Engagement, Undergraduate Students, Engineering Education, Video Games
Peer reviewed Peer reviewed
Direct linkDirect link
Christoph G. Salzmann; Sophia M. Vecchi Marsh; Jinjie Li; Luca Slater – Journal of Chemical Education, 2025
Proportional-Integral-Derivative (PID) controllers are essential in ensuring the stability and efficiency of numerous scientific, industrial, and medical processes. However, teaching the principles of PID control can be challenging, especially when the introduction focuses on the underlying mathematical framework. To address this, we developed the…
Descriptors: Science Education, Science Instruction, Teaching Methods, Demonstrations (Educational)
Singelmann, Lauren Nichole – ProQuest LLC, 2022
To meet the national and international call for creative and innovative engineers, many engineering departments and classrooms are striving to create more authentic learning spaces where students are actively engaging with design and innovation activities. For example, one model for teaching innovation is Innovation-Based Learning (IBL) where…
Descriptors: Engineering Education, Design, Educational Innovation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Saxena, Nitin Kumar; Chauhan, Bhavesh Kumar; Gouri, Sonia; Kumar, Ashwani; Gupta, Anmol – IEEE Transactions on Education, 2023
Contribution: The proposed work carries out the training and testing of the available data through an artificial neural network and develops a model to allocate the subject for maximum outcome. The system also provides percentagewise correlation among all the possible subjects of best fit to allocate among the faculty members. Background: Data…
Descriptors: Knowledge Management, Artificial Intelligence, Higher Education, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Hu; Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Quantum information science and engineering (QISE) is a rapidly developing field that leverages the skills of experts from many disciplines to utilize the potential of quantum systems in a variety of applications. It requires talent from a wide variety of traditional fields, including physics, engineering, chemistry, and computer science, to name…
Descriptors: Quantum Mechanics, Computer Science Education, Inquiry, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mike, Koby; Hazzan, Orit – IEEE Transactions on Education, 2023
Contribution: This article presents evidence that electrical engineering, computer science, and data science students, participating in introduction to machine learning (ML) courses, fail to interpret the performance of ML algorithms correctly, since they fail to consider the application domain. This phenomenon is referred to as the domain neglect…
Descriptors: Engineering Education, Computer Science Education, Data Science, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Sakir Hossain Faruque; Sharun Akter Khushbu; Sharmin Akter – Education and Information Technologies, 2025
A career is crucial for anyone to fulfill their desires through hard work. During their studies, students cannot find the best career suggestions unless they receive meaningful guidance tailored to their skills. Therefore, we developed an AI-assisted model for early prediction to provide better career suggestions. Although the task is difficult,…
Descriptors: Decision Making, Career Development, Career Guidance, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Wanli; Pei, Bo; Li, Shan; Chen, Guanhua; Xie, Charles – Interactive Learning Environments, 2023
Engineering design plays an important role in education. However, due to its open nature and complexity, providing timely support to students has been challenging using the traditional assessment methods. This study takes an initial step to employ learning analytics to build performance prediction models to help struggling students. It allows…
Descriptors: Learning Analytics, Engineering Education, Prediction, Design
Taylor V. Williams – ProQuest LLC, 2022
Clustering, a prevalent class of machine learning (ML) algorithms used in data mining and pattern-finding--has increasingly helped engineering education researchers and educators see and understand assessment patterns at scale. However, a challenge remains to make ML-enabled educational inferences that are useful and reliable for research or…
Descriptors: Multivariate Analysis, Data Analysis, Student Evaluation, Large Group Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Peer reviewed Peer reviewed
Jacquot, Raymond G.; And Others – CoED, 1985
Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)
Descriptors: Algorithms, Computer Software, Engineering, Engineering Education
Case, Jennifer; Gunstone, Richard; Lewis, Alison – 2000
Previous findings from the study within which this research is located had uncovered students' approaches to learning in the context of a second year chemical engineering course. Using an analysis of students' reflections on their experience, the study has shown the existence of three approaches to learning in this context: an 'information-based'…
Descriptors: Algorithms, Chemistry, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Harden, Richard C.; Simons, Fred O., Jr. – CoED, 1983
A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)
Descriptors: Algorithms, Calculators, Engineering Education, Higher Education
Previous Page | Next Page »
Pages: 1  |  2  |  3