Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 12 |
Descriptor
Algorithms | 25 |
Mathematics Tests | 25 |
Scores | 8 |
Comparative Analysis | 7 |
Mathematics Instruction | 7 |
Mathematical Models | 6 |
Mathematics Achievement | 6 |
Models | 6 |
Test Items | 6 |
Computer Assisted Testing | 5 |
Correlation | 5 |
More ▼ |
Source
Author
Ashish Gurung | 4 |
Amisha Jindal | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Albert, James H. | 1 |
Angoff, William H. | 1 |
Chengyu Cui | 1 |
Christopher Santorelli | 1 |
Chun Wang | 1 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 1 |
Researchers | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
SAT (College Admission Test) | 3 |
Trends in International… | 3 |
Program for International… | 2 |
Big Five Inventory | 1 |
Measures of Academic Progress | 1 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Ersoy Öz; Okan Bulut; Zuhal Fatma Cellat; Hülya Yürekli – Education and Information Technologies, 2025
Predicting student performance in international large-scale assessments (ILSAs) is crucial for understanding educational outcomes on a global scale. ILSAs, such as the Program for International Student Assessment and the Trends in International Mathematics and Science Study, serve as vital tools for policymakers, educators, and researchers to…
Descriptors: Foreign Countries, Achievement Tests, Secondary School Students, International Assessment
Hanife Merve Erdogan; Nazan Sezen Yüksel – Acta Didactica Napocensia, 2023
The aim of this study is to classify the subjects and skills of middle school mathematics course in the context of MATH Taxonomy and to determine their relations. For this purpose, the questions and answers related to the mathematics subtest of a national exam were analyzed over the answers of 20154 students. The study continued with the analysis…
Descriptors: Mathematics Skills, Taxonomy, Computer Software, Probability
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Meyer, J. Patrick; Hu, Ann; Li, Sylvia – NWEA, 2023
The Content Proximity Project was designed to improve the content validity of the MAP® Growth™ assessments while retaining the ability for the test to adapt off-grade and meet students wherever they are in their learning. Two main features of the project were the development of an enhanced item selection algorithm, and a spring pilot study…
Descriptors: Achievement Tests, Mathematics Achievement, Content Validity, Mathematics Tests
Jeff Ford; Rachel Erickson; Ha Le; Kaylee Vick; Jillian Downey – PRIMUS, 2024
In this study, we analyzed student participation and success in a college-level Calculus I course that utilized standards-based grading. By measuring the level to which students participate in this class structure, we were able to use a clustering algorithm that revealed multiple groupings of students that were distinct based on activity…
Descriptors: Calculus, Mathematics Instruction, Mathematics Achievement, Grades (Scholastic)
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Chengyu Cui; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap,…
Descriptors: Item Response Theory, Accuracy, Simulation, Psychometrics
Nesrin Sahin; Juli K. Dixon; Robert C. Schoen – Grantee Submission, 2020
This observational study used data from 270 second-grade students to investigate the association between students' strategy use for multidigit addition and subtraction and their mathematics achievement. Based on strategies they used during a mathematics interview, students were classified into the following strategy groups: (a) standard algorithm,…
Descriptors: Mathematics Achievement, Comparative Analysis, Grade 2, Elementary School Students
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Whitney-Smith, Rachael Margaret – Journal of Pedagogical Research, 2023
As we move further into the digital age, the acquisition of digital literacy (DL) and computational thinking (CT) skills is emerging internationally as an essential goal for students in contemporary school curricula. As the world becomes more uncertain and volatile due to impacts of artificial intelligence (AI), international unrest, climate…
Descriptors: Thinking Skills, Mathematics Curriculum, National Curriculum, Mathematics Instruction
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating

Tsutakawa, Robert K.; Lin, Hsin Ying – Psychometrika, 1986
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory

Pollak, Henry – Australian Mathematics Teacher, 1989
Possible ways of mechanization for counting using a binary system are discussed. Shows a binary representation of the numbers and geometric models having eight triples of lamps. Provides three problem sets. (YP)
Descriptors: Algorithms, Computation, Geometric Constructions, Geometry

Muraki, Eiji – Applied Psychological Measurement, 1992
The partial credit model with a varying slope parameter is developed and called the generalized partial credit model (GPCM). Analysis results for simulated data by this and other polytomous item-response models demonstrate that the rating formulation of the GPCM is adaptable to the analysis of polytomous item responses. (SLD)
Descriptors: Algorithms, Equations (Mathematics), Generalization, Item Response Theory
Previous Page | Next Page »
Pages: 1 | 2