NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Zuchao Shen; Walter Leite; Huibin Zhang; Jia Quan; Huan Kuang – Journal of Experimental Education, 2025
When designing cluster-randomized trials (CRTs), one important consideration is determining the proper sample sizes across levels and treatment conditions to cost-efficiently achieve adequate statistical power. This consideration is usually addressed in an optimal design framework by leveraging the cost structures of sampling and optimizing the…
Descriptors: Randomized Controlled Trials, Feasibility Studies, Research Design, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Mostafa Hosseinzadeh; Ki Lynn Matlock Cole – Educational and Psychological Measurement, 2024
In real-world situations, multidimensional data may appear on large-scale tests or psychological surveys. The purpose of this study was to investigate the effects of the quantity and magnitude of cross-loadings and model specification on item parameter recovery in multidimensional Item Response Theory (MIRT) models, especially when the model was…
Descriptors: Item Response Theory, Models, Maximum Likelihood Statistics, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Chenchen Ma; Jing Ouyang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Survey instruments and assessments are frequently used in many domains of social science. When the constructs that these assessments try to measure become multifaceted, multidimensional item response theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration, and scoring. However, the computational…
Descriptors: Algorithms, Item Response Theory, Scoring, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Thakur, Khusbu; Kumar, Vinit – New Review of Academic Librarianship, 2022
A vast amount of published scholarly literature is generated every day. Today, it is one of the biggest challenges for organisations to extract knowledge embedded in published scholarly literature for business and research applications. Application of text mining is gaining popularity among researchers and applications are growing exponentially in…
Descriptors: Information Retrieval, Data Analysis, Research Methodology, Trend Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yu; Chiu, Chia-Yi; Köhn, Hans Friedrich – Journal of Educational and Behavioral Statistics, 2023
The multiple-choice (MC) item format has been widely used in educational assessments across diverse content domains. MC items purportedly allow for collecting richer diagnostic information. The effectiveness and economy of administering MC items may have further contributed to their popularity not just in educational assessment. The MC item format…
Descriptors: Multiple Choice Tests, Nonparametric Statistics, Test Format, Educational Assessment
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Robert H. Kosar – ProQuest LLC, 2017
Principal component analysis is an important statistical technique for dimension reduction and exploratory data analysis. However, it is not robust to outliers and may obfuscate important data structure such as clustering. We propose a version of principal component analysis based on the robust L2E method. The technique seeks to find the principal…
Descriptors: Research Universities, Taxonomy, Multivariate Analysis, Factor Analysis
Blankmeyer, Eric – 1998
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
Descriptors: Algorithms, Chi Square, Estimation (Mathematics), Robustness (Statistics)
Peer reviewed Peer reviewed
Wirt, Edgar – Journal of Experimental Education, 1987
In negotiating to obtain a sample of records from a computer file, it is important to be able to present a simple program that will produce a representative and valid sample. This article describes two procedures: (1) an interval selection method; and (2) a random numbers file. (JAZ)
Descriptors: Algorithms, Business, Computers, Databases
Finch, Holmes; Huynh, Huynh – 2000
One set of approaches to the problem of clustering with dichotomous data in cluster analysis (CA) was studied. The techniques developed for clustering with binary data involve calculating distances between observations based on the variables and then applying one of the standard CA algorithms to these distances. One of the groups of distances that…
Descriptors: Algorithms, Cluster Analysis, Monte Carlo Methods, Responses
Peer reviewed Peer reviewed
Tisak, John; Meredith, William – Psychometrika, 1989
A longitudinal factor analysis model that is entirely exploratory is proposed for use with multiple populations. Factorial collapse, period/practice effects, and an invariant and/or stationary factor pattern are allowed. The model is formulated stochastically and implemented via a stage-wise EM algorithm. (TJH)
Descriptors: Algorithms, Factor Analysis, Longitudinal Studies, Maximum Likelihood Statistics
Previous Page | Next Page »
Pages: 1  |  2