NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea – Learning & Memory, 2016
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…
Descriptors: Entomology, Animal Behavior, Responses, Stimuli
Peer reviewed Peer reviewed
Terry, William S.; Wagner, Allan R. – Journal of Experimental Psychology: Animal Behavior Processes, 1975
The major question of interest in the present investigation was whether or not a UCS is more effectively represented in STM when its occurrence is relatively surprising as opposed to expected. (Author)
Descriptors: Animal Behavior, Classical Conditioning, Diagrams, Experimental Psychology
Peer reviewed Peer reviewed
Coulter, Xenia; And Others – Journal of Experimental Psychology: Animal Behavior Processes, 1976
The results of this study suggested that size change may contribute to the forgetting of events occurring late in development, but that neurological immaturity may underly the forgetting of earlier events. (Editor/RK)
Descriptors: Animal Behavior, Charts, Classical Conditioning, Experimental Psychology
Peer reviewed Peer reviewed
Kandel, Eric R.; Schwartz, James H. – Science, 1982
Describes how a behavioral system in Aplysia (marine snail) can be used to examine mechanisms of several forms of learning at different levels of analysis: behavioral, cell-physiological, ultrastructural, and molecular. Focusing on short-term sensitization, suggests how molecular mechanisms can be extended to explain long-term memory and classical…
Descriptors: Animal Behavior, Associative Learning, Biochemistry, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S. – Learning & Memory, 2004
Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…
Descriptors: Memory, Fear, Classical Conditioning, Inhibition
Peer reviewed Peer reviewed
Direct linkDirect link
Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi – Learning & Memory, 2004
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…
Descriptors: Classical Conditioning, Animals, Auditory Stimuli, Cues