Publication Date
In 2025 | 0 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 15 |
Descriptor
Source
Interactive Learning… | 16 |
Author
Hwang, Gwo-Jen | 2 |
Baker, Ryan S. | 1 |
Bateman, Scott | 1 |
Chak Yan Yeung | 1 |
Chang, Ching-Yi | 1 |
Chen, Mei-Rong Alice | 1 |
Christensen, Claire | 1 |
Cui, Wei | 1 |
Darmawansah, Darmawansah | 1 |
Davy Tsz Kit Ng | 1 |
Escarela-Perez, Rafael | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Research | 10 |
Information Analyses | 6 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 2 |
Higher Education | 2 |
Secondary Education | 2 |
Adult Education | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Policymakers | 1 |
Researchers | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jaeho Jeon; Seongyong Lee; Seongyune Choi – Interactive Learning Environments, 2024
Chatbot research has received growing attention due to the rapid diversification of chatbot technology, as demonstrated by the emergence of large language models (LLMs) and their integration with automatic speech recognition. However, among various chatbot types, speech-recognition chatbots have received limited attention in relevant research…
Descriptors: Literature Reviews, Content Analysis, Second Language Learning, Artificial Intelligence
Rosmansyah, Yusep; Putro, Budi Laksono; Putri, Atina; Utomo, Nur Budi; Suhardi – Interactive Learning Environments, 2023
In this article, smart learning environment (SLE) is defined as a hybrid learning system that provides learners and other stakeholders with a joyful learning process while achieving learning outcomes as a result of the employed intelligent tools and techniques. From literature study, existing SLE models and frameworks are difficult to understand…
Descriptors: Electronic Learning, Artificial Intelligence, Educational Technology, Technology Uses in Education
John S. Y. Lee; Chak Yan Yeung; Zhenqun Yang – Interactive Learning Environments, 2024
A text recommendation system helps language learners find suitable reading materials. Similar to graded readers, most systems assign difficulty levels or school grades to the documents in their database, and then identify the documents that best match the language proficiency of the learner. This graded approach has two main limitations. First,…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Second Language Learning, Language Acquisition
S. Sageengrana; S. Selvakumar; S. Srinivasan – Interactive Learning Environments, 2024
Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations receive materials from their leftovers, and their…
Descriptors: Electronic Learning, Dropouts, Student Behavior, Student Interests
Tang, Kai-Yu; Chang, Ching-Yi; Hwang, Gwo-Jen – Interactive Learning Environments, 2023
Artificial intelligence (AI) has been widely explored across the world over the past decades. A particularly emerging topic is the application of AI in e-learning (AIeL) to improve the effectiveness of teaching and learning in precision education. This study aims to systematically review publication patterns for AIeL research with a focus on…
Descriptors: Educational Trends, Trend Analysis, Artificial Intelligence, Technology Uses in Education
Wan, Haipeng; Yu, Shengquan – Interactive Learning Environments, 2023
Most online learning researchers use resource recommendation and retrieve based on learning performance and learning style to provide accurate learning resources, but it is a closed and passive adaptive way. Learners always do not know the recommendation rationale and just receive the result-oriented recommended resources without having a chance…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Artificial Intelligence, Cognitive Mapping
Yung-Hsiang Hu; Jo Shan Fu; Hui-Chin Yeh – Interactive Learning Environments, 2024
Artificial intelligence aims to restructure and process re-engineering education and teaching processes and accelerate the evolution of the whole education system from information to intelligence. Robotic Process Automation (RPA) robots learn by observing people at work, analyzing user processes repeatedly, and adjusting or correcting automated…
Descriptors: Intelligent Tutoring Systems, Robotics, Automation, Instructional Effectiveness
Liang, Jia-Cing; Hwang, Gwo-Jen; Chen, Mei-Rong Alice; Darmawansah, Darmawansah – Interactive Learning Environments, 2023
This study explores the roles and research foci of AILEd (Artificial Intelligence in Language Education). The AILEd studies published from 1990 to 2020 in the WOS (Web of Science) database were included in the present study. Based on the well-recognized Technology-based Learning Review model, several dimensions, such as research methods, research…
Descriptors: Artificial Intelligence, Technology Uses in Education, Second Language Learning, Educational Trends
Wang, Shuai; Christensen, Claire; Cui, Wei; Tong, Richard; Yarnall, Louise; Shear, Linda; Feng, Mingyu – Interactive Learning Environments, 2023
Adaptive learning systems personalize instruction to students' individual learning needs and abilities. Such systems have shown positive impacts on learning. Many schools in the United States have adopted adaptive learning systems, and the rate of adoption in China is accelerating, reaching almost 2 million unique users for one product alone in…
Descriptors: Comparative Analysis, Teaching Methods, Intelligent Tutoring Systems, Foreign Countries
Davy Tsz Kit Ng; Jiahong Su; Jac Ka Lok Leung; Samuel Kai Wah Chu – Interactive Learning Environments, 2024
Artificial intelligence (AI) literacy has emerged to equip students with digital skills for effective evaluation, communication, collaboration, and ethical use of AI in online, home, and workplace settings. Countries are increasingly developing AI curricula to support students' technological skills for future studies and careers. However, there is…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Secondary School Students
Paquette, Luc; Baker, Ryan S. – Interactive Learning Environments, 2019
Learning analytics research has used both knowledge engineering and machine learning methods to model student behaviors within the context of digital learning environments. In this paper, we compare these two approaches, as well as a hybrid approach combining the two types of methods. We illustrate the strengths of each approach in the context of…
Descriptors: Comparative Analysis, Student Behavior, Models, Case Studies
Mousavinasab, Elham; Zarifsanaiey, Nahid; R. Niakan Kalhori, Sharareh; Rakhshan, Mahnaz; Keikha, Leila; Ghazi Saeedi, Marjan – Interactive Learning Environments, 2021
With the rapid growth of technology, computer learning has become increasingly integrated with artificial intelligence techniques in order to develop more personalized educational systems. These systems are known as Intelligent Tutoring systems (ITSs). This paper focused on the variant characteristics of ITSs developed across different educational…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Individualized Instruction, Web Based Instruction
Yuan, Chia-Ching; Li, Cheng-Hsuan; Peng, Chin-Cheng – Interactive Learning Environments, 2023
Fighter jets are a critical national asset. Because of the high cost of their manufacture and that of their related equipment, both pilots and maintenance personnel must complete intensive training before coming into contact with a jet. Due to gradual military downsizing, one-on-one training is often impracticable, and the level of familiarization…
Descriptors: Artificial Intelligence, Man Machine Systems, Technology Uses in Education, Educational Technology
The Social Semantic Web in Intelligent Learning Environments: State of the Art and Future Challenges
Jovanovic, Jelena; Gasevic, Dragan; Torniai, Carlo; Bateman, Scott; Hatala, Marek – Interactive Learning Environments, 2009
Today's technology-enhanced learning practices cater to students and teachers who use many different learning tools and environments and are used to a paradigm of interaction derived from open, ubiquitous, and socially oriented services. In this context, a crucial issue for education systems in general, and for Intelligent Learning Environments…
Descriptors: Models, Interaction, Educational Technology, Design Requirements
Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael – Interactive Learning Environments, 2006
Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Conflict Resolution, Cognitive Style
Previous Page | Next Page ยป
Pages: 1 | 2