NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiang Feng; Keyi Yuan; Xiu Guan; Longhui Qiu – Interactive Learning Environments, 2024
Datasets are critical for emotion analysis in the machine learning field. This study aims to explore emotion analysis datasets and related benchmarks in online learning, since, currently, there are very few studies that explore the same. We have scientifically labeled the topic and nine-category emotion of 4715 comment texts in online learning…
Descriptors: MOOCs, Psychological Patterns, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Wen; Hu Juan – Interactive Learning Environments, 2024
To address three issues identified in previous research this study proposes a clustering-based MOOC dropout identification method and an early prediction model based on deep learning. The MOOC learning behavior of self-paced students was analyzed, and two well-known MOOC datasets were used for analysis and validation. The findings are as follows:…
Descriptors: MOOCs, Dropouts, Dropout Characteristics, Dropout Research
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence