Publication Date
In 2025 | 4 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 16 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 18 |
Descriptor
Artificial Intelligence | 18 |
Data Analysis | 18 |
Learning Analytics | 18 |
Computer Software | 6 |
Academic Achievement | 5 |
Prediction | 5 |
Models | 4 |
Visual Aids | 4 |
College Faculty | 3 |
Foreign Countries | 3 |
Online Courses | 3 |
More ▼ |
Source
Author
Andy Nguyen | 1 |
Aom Perkash | 1 |
Aviram Berg | 1 |
Bakharia, Aneesha | 1 |
Barnes, Tiffany | 1 |
Bonnie Stewart | 1 |
Bouchet, Francois, Ed. | 1 |
Carroll, David | 1 |
Chen, Fu | 1 |
Chen, Guanliang | 1 |
Chi, Min | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 8 |
Reports - Descriptive | 4 |
Speeches/Meeting Papers | 4 |
Collected Works - Proceedings | 2 |
Dissertations/Theses -… | 2 |
Information Analyses | 2 |
Books | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 12 |
Postsecondary Education | 12 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kamila Misiejuk; Sonsoles López-Pernas; Rogers Kaliisa; Mohammed Saqr – Journal of Learning Analytics, 2025
Generative artificial intelligence (GenAI) has opened new possibilities for designing learning analytics (LA) tools, gaining new insights about student learning processes and their environment, and supporting teachers in assessing and monitoring students. This systematic literature review maps the empirical research of 41 papers utilizing GenAI…
Descriptors: Literature Reviews, Artificial Intelligence, Learning Analytics, Data Collection
Giora Alexandron; Aviram Berg; Jose A. Ruiperez-Valiente – IEEE Transactions on Learning Technologies, 2024
This article presents a general-purpose method for detecting cheating in online courses, which combines anomaly detection and supervised machine learning. Using features that are rooted in psychometrics and learning analytics literature, and capture anomalies in learner behavior and response patterns, we demonstrate that a classifier that is…
Descriptors: Cheating, Identification, Online Courses, Artificial Intelligence
Ridwan Whitehead; Andy Nguyen; Sanna Järvelä – Journal of Learning Analytics, 2025
Incorporating non-verbal data streams is essential to understanding the dynamics of interaction within collaborative learning environments in which a variety of verbal and non-verbal modes of communication intersect. However, the complexity of non-verbal data -- especially gathered in the wild from collaborative learning contexts -- demands…
Descriptors: Case Studies, Nonverbal Communication, Video Technology, Data Analysis
Xavier Ochoa; Xiaomeng Huang; Yuli Shao – Journal of Learning Analytics, 2025
Generative AI (GenAI) has the potential to revolutionize the analysis of educational data, significantly impacting learning analytics (LA). This study explores the capability of non-experts, including administrators, instructors, and students, to effectively use GenAI for descriptive LA tasks without requiring specialized knowledge in data…
Descriptors: Learning Analytics, Artificial Intelligence, Computer Software, Scores
Gyeonggeon Lee; Xiaoming Zhai – TechTrends: Linking Research and Practice to Improve Learning, 2025
Educators and researchers have analyzed various image data acquired from teaching and learning, such as images of learning materials, classroom dynamics, students' drawings, etc. However, this approach is labour-intensive and time-consuming, limiting its scalability and efficiency. The recent development in the Visual Question Answering (VQA)…
Descriptors: Artificial Intelligence, Computer Software, Teaching Methods, Learning Processes
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Nazempour, Rezvan – ProQuest LLC, 2023
Educational Data Mining (EDM) is an emerging field that aims to better understand students' behavior patterns and learning environments by employing statistical and machine learning methods to analyze large repositories of educational data. Analysis of variable data in the early stages of a course might be used to develop a comprehensive…
Descriptors: Artificial Intelligence, Outcomes of Education, Electronic Learning, Educational Environment
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Kitto, Kirsty; Knight, Simon – British Journal of Educational Technology, 2019
Artificial intelligence and data analysis (AIDA) are increasingly entering the field of education. Within this context, the subfield of learning analytics (LA) has, since its inception, had a strong emphasis upon ethics, with numerous checklists and frameworks proposed to ensure that student privacy is respected and potential harms avoided. Here,…
Descriptors: Ethics, Learning Analytics, Artificial Intelligence, Data Analysis
Taylor V. Williams – ProQuest LLC, 2022
Clustering, a prevalent class of machine learning (ML) algorithms used in data mining and pattern-finding--has increasingly helped engineering education researchers and educators see and understand assessment patterns at scale. However, a challenge remains to make ML-enabled educational inferences that are useful and reliable for research or…
Descriptors: Multivariate Analysis, Data Analysis, Student Evaluation, Large Group Instruction
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Lajoie, Susanne P. – International Journal of Artificial Intelligence in Education, 2021
I first met Jim Greer at the NATO Advanced Study Institute on Syntheses of Instructional Sciences and Computing Science for Effective Instructional Computing Systems in 1990 in Calgary, Canada. It was during this meeting that I came to realize that Jim was one of those rare individuals that could help "translate" computer science…
Descriptors: Models, Student Characteristics, Artificial Intelligence, Computer Uses in Education
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Juliana E. Raffaghelli; Bonnie Stewart – OTESSA Conference Proceedings, 2021
In the higher education context, an increasing concern on the technical or instrumental approach permeates attention to academics' data literacies and faculty development. The need for data literacy to deal specifically with the rise of learning analytics in higher education has been raised by some authors, though in spite of some focus on the…
Descriptors: Statistics Education, Faculty Development, Higher Education, Learning Analytics
Previous Page | Next Page »
Pages: 1 | 2