NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James Edward Hill; Catherine Harris; Andrew Clegg – Research Synthesis Methods, 2024
Data extraction is a time-consuming and resource-intensive task in the systematic review process. Natural language processing (NLP) artificial intelligence (AI) techniques have the potential to automate data extraction saving time and resources, accelerating the review process, and enhancing the quality and reliability of extracted data. In this…
Descriptors: Artificial Intelligence, Search Engines, Data Collection, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Cheryl Burleigh; Andrea M. Wilson – Journal of Educational Technology Systems, 2024
With the advent of readily accessible generative artificial intelligence (GAI), a concern exists within the academic community that research data collected in the context of conducting doctoral dissertation research is authentic. The purpose of the present study was to explore the role of GAI in the production of new research paying particular…
Descriptors: Artificial Intelligence, Data Collection, Doctoral Dissertations, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
John Y. H. Bai; Olaf Zawacki-Richter; Wolfgang Muskens – Turkish Online Journal of Distance Education, 2024
Artificial intelligence in education (AIEd) is a fast-growing field of research. In previous work, we described efforts to explore the possible futures of AIEd by identifying key variables and their future prospects. This paper re-examines our discussions on the governance of data and the role of students and teachers by considering the…
Descriptors: Artificial Intelligence, Technology Uses in Education, Natural Language Processing, Governance
Peer reviewed Peer reviewed
Direct linkDirect link
Billington, Catherine; Rivero, Gonzalo; Jannett, Andrew; Chen, Jiating – Field Methods, 2022
During data collection, field interviewers often append notes or comments to a case in open text fields to request updates to case-level data. Processing these comments can improve data quality, but many are non-actionable, and processing remains a costly manual task. This article presents a case study using a novel application of machine learning…
Descriptors: Artificial Intelligence, Interviews, Data Collection, Notetaking
Peer reviewed Peer reviewed
Direct linkDirect link
Pammer-Schindler, Viktoria; Rosé, Carolyn – International Journal of Artificial Intelligence in Education, 2022
Professional and lifelong learning are a necessity for workers. This is true both for re-skilling from disappearing jobs, as well as for staying current within a professional domain. AI-enabled scaffolding and just-in-time and situated learning in the workplace offer a new frontier for future impact of AIED. The hallmark of this community's work…
Descriptors: Data, Ethics, Informal Education, Professional Development
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Tanner M.; Saleh, Asmalina; Ozogul, Gamze – International Journal of Artificial Intelligence in Education, 2023
Encouraging teachers to reflect on their instructional practices and course design has been shown to be an effective means of improving instruction and student learning. However, the process of encouraging reflection is difficult; reflection requires quality data, thoughtful analysis, and contextualized interpretation. Because of this, research on…
Descriptors: Reflection, Artificial Intelligence, Natural Language Processing, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McFarland, Daniel A.; Khanna, Saurabh; Domingue, Benjamin W.; Pardos, Zachary A. – AERA Open, 2021
This AERA Open special topic concerns the large emerging research area of education data science (EDS). In a narrow sense, EDS applies statistics and computational techniques to educational phenomena and questions. In a broader sense, it is an umbrella for a fleet of new computational techniques being used to identify new forms of data, measures,…
Descriptors: Learning Analytics, Statistics, Computation, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon Sepulvado; Jennifer Hamilton – Society for Research on Educational Effectiveness, 2021
Background: Traditional survey efforts to gather outcome data at scale have significant limitations, including cost, time, and respondent burden. This pilot study explored new and innovative large-scale methods of collecting and validating data from publicly available sources. Taking advantage of emerging data science techniques, we leverage…
Descriptors: Automation, Data Collection, Data Analysis, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Mason, Claire M.; Chen, Haohui; Evans, David; Walker, Gavin – International Journal of Information and Learning Technology, 2023
Purpose: This paper aims to demonstrate how skills taxonomies can be used in combination with machine learning to integrate diverse online datasets and reveal skills gaps. The purpose of this study is then to show how the skills gaps revealed by the integrated datasets can be used to achieve better labour market alignment, keep educational…
Descriptors: Taxonomy, Artificial Intelligence, Data Collection, Data Analysis
Hamilton, Clovia; Swart, William; Stokes, Gerald M. – Online Submission, 2021
We address the issue of consumer privacy against the backdrop of the national priority of maintaining global leadership in artificial intelligence, the ongoing research in Artificial Cognitive Assistants, and the explosive growth in the development and application of Voice Activated Personal Assistants (VAPAs) such as Alexa and Siri, spurred on by…
Descriptors: Rating Scales, Ethics, Compliance (Legal), Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Knight, Simon; Littleton, Karen – Journal of Learning Analytics, 2015
This paper provides a novel, conceptually driven stance on the state of the contemporary analytic challenges faced in the treatment of dialogue as a form of data across on- and offline sites of learning. In prior research, preliminary steps have been taken to detect occurrences of such dialogue using automated analysis techniques. Such advances…
Descriptors: Dialogs (Language), Data Collection, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Previous Page | Next Page »
Pages: 1  |  2