NotesFAQContact Us
Collection
Advanced
Search Tips
Location
South Korea1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Laura E. Matzen; Zoe N. Gastelum; Breannan C. Howell; Kristin M. Divis; Mallory C. Stites – Cognitive Research: Principles and Implications, 2024
This study addressed the cognitive impacts of providing correct and incorrect machine learning (ML) outputs in support of an object detection task. The study consisted of five experiments that manipulated the accuracy and importance of mock ML outputs. In each of the experiments, participants were given the T and L task with T-shaped targets and…
Descriptors: Artificial Intelligence, Error Patterns, Decision Making, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mohammed Saqr; Sonsoles López-Pernas – Smart Learning Environments, 2024
In learning analytics and in education at large, AI explanations are always computed from aggregate data of all the students to offer the "average" picture. Whereas the average may work for most students, it does not reflect or capture the individual differences or the variability among students. Therefore, instance-level…
Descriptors: Artificial Intelligence, Decision Making, Predictor Variables, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Marco Lünich; Birte Keller; Frank Marcinkowski – Technology, Knowledge and Learning, 2024
Artificial intelligence in higher education is becoming more prevalent as it promises improvements and acceleration of administrative processes concerning student support, aiming for increasing student success and graduation rates. For instance, Academic Performance Prediction (APP) provides individual feedback and serves as the foundation for…
Descriptors: Predictor Variables, Artificial Intelligence, Computer Software, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk; Kyung T. Han – Journal of Educational and Behavioral Statistics, 2024
As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to…
Descriptors: Psychometrics, Ethics, Decision Making, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Naveen Gudigantala; Vijay Mehrotra – Journal of Information Systems Education, 2024
Founded in 2006, Zillow established itself as the leading online real estate marketplace. In 2018, Zillow launched Zillow Offers, a new business that purchased and sold homes. Zillow Offers provided home sellers with a faster purchase process than traditional realtors by gathering data from sellers online and making offers immediately, a process…
Descriptors: Housing, Artificial Intelligence, Internet, Web Sites
Peer reviewed Peer reviewed
Direct linkDirect link
Yinying Wang – Discover Education, 2024
In this perspective article, I explore the implications of artificial intelligence (AI)-enabled algorithmic decisions on education governance. Three main questions are explored: (1) Are algorithmic decisions de facto policy decisions? (2) What distinct features of algorithmic decisions necessitate a re-evaluation of education governance? (3) How…
Descriptors: Algorithms, Decision Making, Artificial Intelligence, Educational Administration
Peer reviewed Peer reviewed
Direct linkDirect link
Kheira Ouassif; Benameur Ziani – Education and Information Technologies, 2025
The integration of educational data mining and deep neural networks, along with the adoption of the Apriori algorithm for generating association rules, focuses to resolve the problem of misdirection of students in the university, leading to their failure and dropout. This is reached through the development of an intelligent model that predicts the…
Descriptors: Predictor Variables, College Students, Majors (Students), Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Asiye Toker Gokce; Arzu Deveci Topal; Aynur Kolburan Geçer; Canan Dilek Eren – Education and Information Technologies, 2025
Artificial intelligence (AI) literacy is critical to shaping students' academic experiences and future opportunities inhigher education. This study examines AI literacy among university students, examining variables such as gender, frequency of use of AI applications, completion of AI-related courses, and field of study. The research involved 664…
Descriptors: Artificial Intelligence, Technological Literacy, College Students, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Moran P. Lee; Abubakir Siedahmed; Neil T. Heffernan – Grantee Submission, 2024
Contextual multi-armed bandits have previously been used to personalize student support messages given to learners by supplying a model with relevant context about the user, problem, and available student supports. In this work, we propose using careful feature selection with relevant domain knowledge to improve the quality of student support…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Reinforcement
Peer reviewed Peer reviewed
Direct linkDirect link
Hyemin Yoon; HyunJin Kim; Sangjin Kim – Measurement: Interdisciplinary Research and Perspectives, 2024
We have maintained the customer grade system that is being implemented to customers with excellent performance through customer segmentation for years. Currently, financial institutions that operate the customer grade system provide similar services based on the score calculation criteria, but the score calculation criteria vary from the financial…
Descriptors: Classification, Artificial Intelligence, Prediction, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Md Akib Zabed Khan; Agoritsa Polyzou – Journal of Educational Data Mining, 2024
In higher education, academic advising is crucial to students' decision-making. Data-driven models can benefit students in making informed decisions by providing insightful recommendations for completing their degrees. To suggest courses for the upcoming semester, various course recommendation models have been proposed in the literature using…
Descriptors: Academic Advising, Courses, Data Use, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Tayebeh Sargazi Moghadam; Ali Darejeh; Mansoureh Delaramifar; Sara Mashayekh – Interactive Learning Environments, 2024
Learners' emotional states might change during the learning process, and unpredictable variations of a person's emotions raise the demand for regular assessment of feelings during learning. In this paper, an AI-based decision framework is proposed and implemented for e-learning systems that identify suitable micro-brake activities based on the…
Descriptors: Artificial Intelligence, Decision Making, Electronic Learning, Psychological Patterns
Previous Page | Next Page »
Pages: 1  |  2