NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Egle Gedrimiene; Ismail Celik; Antti Kaasila; Kati Mäkitalo; Hanni Muukkonen – Education and Information Technologies, 2024
Artificial intelligence (AI) and learning analytics (LA) tools are increasingly implemented as decision support for learners and professionals. However, their affordances for guidance purposes have yet to be examined. In this paper, we investigated advantages and challenges of AI-enhanced LA tool for supporting career decisions from the user…
Descriptors: Artificial Intelligence, Learning Analytics, Career Choice, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Ley, Tobias; Tammets, Kairit; Pishtari, Gerti; Chejara, Pankaj; Kasepalu, Reet; Khalil, Mohammad; Saar, Merike; Tuvi, Iiris; Väljataga, Terje; Wasson, Barbara – Journal of Computer Assisted Learning, 2023
Background: With increased use of artificial intelligence in the classroom, there is now a need to better understand the complementarity of intelligent learning technology and teachers to produce effective instruction. Objective: The paper reviews the current research on intelligent learning technology designed to make models of student learning…
Descriptors: Artificial Intelligence, Technology Uses in Education, Learning Analytics, Instructional Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Wanxue Qi – European Journal of Education, 2025
Massive Open Online Courses (MOOCs) effectively support online learning behaviour; while constructing a sustainable learning process, MOOCs have also formed the social network. In addition, learners' burnout state has become a serious obstacle to the development and promotion of MOOCs. This study analyzes the potential social behaviour associated…
Descriptors: MOOCs, Burnout, Social Behavior, Feedback (Response)
Emily Oakes; Yih Tsao; Victor Borden – Association for Institutional Research, 2023
Accelerating advancements in learning analytics and artificial intelligence (AI) offers unprecedented opportunities for improving educational experiences. Without including students' perspectives, however, there is a potential for these advancements to inadvertently marginalize or harm the very individuals these technologies aim to support. This…
Descriptors: Learning Analytics, Artificial Intelligence, Student Participation, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Baran, Evrim; AlZoubi, Dana; Morales, Anasilvia Salazar – TechTrends: Linking Research and Practice to Improve Learning, 2023
Computational analysis methods and machine learning techniques introduce innovative ways to capture classroom interactions and display data on analytics dashboards. Automated classroom analytics employ advanced data analysis, providing educators with comprehensive insights into student participation, engagement, and behavioral trends within…
Descriptors: Automation, Learning Analytics, Stakeholders, Computation
Ajay Kulkarni – ProQuest LLC, 2022
This work focuses on simulation, design, development, and evaluation of a visual Learning Analytics (LA) tool -- Real-time Educational AI-powered Classroom Tool (REACT) -- to support educators' data-driven decision-making. The educational institutions face one of the biggest challenges, such as predicting student performance, detecting undesirable…
Descriptors: Artificial Intelligence, Learning Analytics, Visual Learning, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Matthew Berland; Antero Garcia – MIT Press, 2024
Educational analytics tend toward aggregation, asking what a "normative" learner does. In "The Left Hand of Data," educational researchers Matthew Berland and Antero Garcia start from a different assumption--that outliers are, and must be treated as, valued individuals. Berland and Garcia argue that the aim of analytics should…
Descriptors: Justice, Learning Analytics, Data Use, Futures (of Society)
Nasheen Nur – ProQuest LLC, 2021
The main goal of learning analytics and early detection systems is to extract knowledge from student data to understand students' trends of activities towards success and risk and design intervention methods to improve learning performance and experience. However, many factors contribute to the challenge of designing and building effective…
Descriptors: Artificial Intelligence, Undergraduate Students, Learning Analytics, Time Factors (Learning)
Peer reviewed Peer reviewed
Direct linkDirect link
Lewis, Armanda; Stoyanovich, Julia – International Journal of Artificial Intelligence in Education, 2022
Although an increasing number of ethical data science and AI courses is available, with many focusing specifically on technology and computer ethics, pedagogical approaches employed in these courses rely exclusively on texts rather than on algorithmic development or data analysis. In this paper we recount a recent experience in developing and…
Descriptors: Statistics Education, Ethics, Artificial Intelligence, Compliance (Legal)
Peer reviewed Peer reviewed
Direct linkDirect link
Kil, David; Baldasare, Angela; Milliron, Mark – Current Issues in Education, 2021
Student success, both during and after college, is central to the mission of higher education. Within the higher-education and, more specifically, the student-success context, the core raison d'être of machine learning (ML) is to help institutions achieve their social mission in an efficient and effective manner. While there should be synergy…
Descriptors: Learning Analytics, Academic Achievement, College Students, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Abdelhafez, Hoda Ahmed; Elmannai, Hela – International Journal of Information and Communication Technology Education, 2022
Learning data analytics improves the learning field in higher education using educational data for extracting useful patterns and making better decisions. Identifying potential at-risk students may help instructors and academic guidance to improve the students' performance and the achievement of learning outcomes. The aim of this research study is…
Descriptors: Learning Analytics, Mathematics, Prediction, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Prinsloo, Paul; Slade, Sharon; Khalil, Mohammad – Journal of Research on Technology in Education, 2023
This article seeks to explore different combinations of human and Artificial Intelligence (AI) decision-making in the context of distributed learning. Distributed learning institutions face specific challenges such as high levels of student attrition and ensuring quality, cost-effective student support at scale using a range of technologies, such…
Descriptors: Decision Making, Algorithms, Artificial Intelligence, Cost Effectiveness
Previous Page | Next Page »
Pages: 1  |  2