Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 14 |
| Since 2017 (last 10 years) | 15 |
| Since 2007 (last 20 years) | 16 |
Descriptor
| Artificial Intelligence | 16 |
| Formative Evaluation | 16 |
| Natural Language Processing | 16 |
| Feedback (Response) | 11 |
| Automation | 9 |
| Student Evaluation | 7 |
| Technology Uses in Education | 7 |
| Foreign Countries | 5 |
| Summative Evaluation | 5 |
| College Students | 4 |
| Biology | 3 |
| More ▼ | |
Source
Author
| Alexandron, Giora | 1 |
| Andrew Katz | 1 |
| Araz Zirar | 1 |
| Ariely, Moriah | 1 |
| Bill Roberts | 1 |
| Bohm, Isabell | 1 |
| Carme Grimalt-Álvaro | 1 |
| Chahna Gonsalves | 1 |
| Chaohua Ou | 1 |
| Clayton Cohn | 1 |
| Cropley, David H. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 15 |
| Reports - Research | 13 |
| Information Analyses | 2 |
| Collected Works - Proceedings | 1 |
| Reports - Evaluative | 1 |
Education Level
| Higher Education | 7 |
| Postsecondary Education | 7 |
| Elementary Education | 2 |
| Secondary Education | 2 |
| Early Childhood Education | 1 |
| Elementary Secondary Education | 1 |
| Grade 3 | 1 |
| Grade 4 | 1 |
| Grade 5 | 1 |
| Grade 6 | 1 |
| High Schools | 1 |
| More ▼ | |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Owen Henkel; Libby Hills; Bill Roberts; Joshua McGrane – International Journal of Artificial Intelligence in Education, 2025
Formative assessment plays a critical role in improving learning outcomes by providing feedback on student mastery. Open-ended questions, which require students to produce multi-word, nontrivial responses, are a popular tool for formative assessment as they provide more specific insights into what students do and do not know. However, grading…
Descriptors: Artificial Intelligence, Grading, Reading Comprehension, Natural Language Processing
Elisabeth Bauer; Michael Sailer; Frank Niklas; Samuel Greiff; Sven Sarbu-Rothsching; Jan M. Zottmann; Jan Kiesewetter; Matthias Stadler; Martin R. Fischer; Tina Seidel; Detlef Urhahne; Maximilian Sailer; Frank Fischer – Journal of Computer Assisted Learning, 2025
Background: Artificial intelligence, particularly natural language processing (NLP), enables automating the formative assessment of written task solutions to provide adaptive feedback automatically. A laboratory study found that, compared with static feedback (an expert solution), adaptive feedback automated through artificial neural networks…
Descriptors: Artificial Intelligence, Feedback (Response), Computer Simulation, Natural Language Processing
Steffen Steinert; Karina E. Avila; Stefan Ruzika; Jochen Kuhn; Stefan Küchemann – Smart Learning Environments, 2024
Effectively supporting students in mastering all facets of self-regulated learning is a central aim of teachers and educational researchers. Prior research could demonstrate that formative feedback is an effective way to support students during self-regulated learning. In this light, we propose the application of Large Language Models (LLMs) to…
Descriptors: Formative Evaluation, Feedback (Response), Natural Language Processing, Artificial Intelligence
Marrone, Rebecca; Cropley, David H.; Wang, Z. – Creativity Research Journal, 2023
Creativity is now accepted as a core 21st-century competency and is increasingly an explicit part of school curricula around the world. Therefore, the ability to assess creativity for both formative and summative purposes is vital. However, the "fitness-for-purpose" of creativity tests has recently come under scrutiny. Current creativity…
Descriptors: Automation, Evaluation Methods, Creative Thinking, Mathematics Education
Wesley Morris; Scott Crossley; Langdon Holmes; Chaohua Ou; Mihai Dascalu; Danielle McNamara – International Journal of Artificial Intelligence in Education, 2025
As intelligent textbooks become more ubiquitous in classrooms and educational settings, the need to make them more interactive arises. An alternative is to ask students to generate knowledge in response to textbook content and provide feedback about the produced knowledge. This study develops Natural Language Processing models to automatically…
Descriptors: Formative Evaluation, Feedback (Response), Textbooks, Artificial Intelligence
Ariely, Moriah; Nazaretsky, Tanya; Alexandron, Giora – International Journal of Artificial Intelligence in Education, 2023
Machine learning algorithms that automatically score scientific explanations can be used to measure students' conceptual understanding, identify gaps in their reasoning, and provide them with timely and individualized feedback. This paper presents the results of a study that uses Hebrew NLP to automatically score student explanations in Biology…
Descriptors: Artificial Intelligence, Algorithms, Natural Language Processing, Hebrew
Moriah Ariely; Tanya Nazaretsky; Giora Alexandron – Journal of Research in Science Teaching, 2024
One of the core practices of science is constructing scientific explanations. However, numerous studies have shown that constructing scientific explanations poses significant challenges to students. Proper assessment of scientific explanations is costly and time-consuming, and teachers often do not have a clear definition of the educational goals…
Descriptors: Biology, Automation, Individualized Instruction, Science Instruction
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Katherine Drinkwater Gregg; Olivia Ryan; Andrew Katz; Mark Huerta; Susan Sajadi – Journal of Engineering Education, 2025
Background: Courses in engineering often use peer evaluation to monitor teamwork behaviors and team dynamics. The qualitative peer comments written for peer evaluations hold potential as a valuable source of formative feedback for students, yet little is known about their content and quality. Purpose: This study uses a large language model (LLM)…
Descriptors: Artificial Intelligence, Technology Uses in Education, Engineering Education, Student Evaluation
Gombert, Sebastian; Di Mitri, Daniele; Karademir, Onur; Kubsch, Marcus; Kolbe, Hannah; Tautz, Simon; Grimm, Adrian; Bohm, Isabell; Neumann, Knut; Drachsler, Hendrik – Journal of Computer Assisted Learning, 2023
Background: Formative assessments are needed to enable monitoring how student knowledge develops throughout a unit. Constructed response items which require learners to formulate their own free-text responses are well suited for testing their active knowledge. However, assessing such constructed responses in an automated fashion is a complex task…
Descriptors: Coding, Energy, Scientific Concepts, Formative Evaluation
Carme Grimalt-Álvaro; Mireia Usart – Journal of Computing in Higher Education, 2024
Sentiment Analysis (SA), a technique based on applying artificial intelligence to analyze textual data in natural language, can help to characterize interactions between students and teachers and improve learning through timely, personalized feedback, but its use in education is still scarce. This systematic literature review explores how SA has…
Descriptors: Formative Evaluation, Higher Education, Artificial Intelligence, Natural Language Processing
Chahna Gonsalves – Journal of Learning Development in Higher Education, 2023
Multiple-choice quizzes (MCQs) are a popular form of assessment. A rapid shift to online assessment during the COVID-19 pandemic in 2020, drove the uptake of MCQs, yet limited invigilation and wide access to material on the internet allow students to solve the questions via internet search. ChatGPT, an artificial intelligence (AI) agent trained on…
Descriptors: Artificial Intelligence, Technology Uses in Education, Natural Language Processing, Multiple Choice Tests
Araz Zirar – Review of Education, 2023
Recent developments in language models, such as ChatGPT, have sparked debate. These tools can help, for example, dyslexic people, to write formal emails from a prompt and can be used by students to generate assessed work. Proponents argue that language models enhance the student experience and academic achievement. Those concerned argue that…
Descriptors: Artificial Intelligence, Technology Uses in Education, Natural Language Processing, Models
Vittorini, Pierpaolo; Menini, Stefano; Tonelli, Sara – International Journal of Artificial Intelligence in Education, 2021
Massive open online courses (MOOCs) provide hundreds of students with teaching materials, assessment tools, and collaborative instruments. The assessment activity, in particular, is demanding in terms of both time and effort; thus, the use of artificial intelligence can be useful to address and reduce the time and effort required. This paper…
Descriptors: Artificial Intelligence, Formative Evaluation, Summative Evaluation, Data
L. Hannah; E. E. Jang; M. Shah; V. Gupta – Language Assessment Quarterly, 2023
Machines have a long-demonstrated ability to find statistical relationships between qualities of texts and surface-level linguistic indicators of writing. More recently, unlocked by artificial intelligence, the potential of using machines to identify content-related writing trait criteria has been uncovered. This development is significant,…
Descriptors: Validity, Automation, Scoring, Writing Assignments
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
