Publication Date
In 2025 | 2 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 18 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 18 |
Descriptor
Algorithms | 18 |
Artificial Intelligence | 18 |
Identification | 18 |
Accuracy | 11 |
At Risk Students | 8 |
Prediction | 7 |
Classification | 5 |
Computer Software | 5 |
Learning Analytics | 4 |
Models | 4 |
Cheating | 3 |
More ▼ |
Source
Author
Adam Fleischhacker | 1 |
Arthur Bakker | 1 |
Austin Wyman | 1 |
Ben Soussia, Amal | 1 |
Boyer, Anne | 1 |
Chen, Hao | 1 |
Christina Weiland | 1 |
Christopher E. Gomez | 1 |
Chuan Cai | 1 |
Cingillioglu, Ilker | 1 |
Cornelisz, Ilja | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 13 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 3 | 1 |
Primary Education | 1 |
Audience
Researchers | 1 |
Location
Delaware | 1 |
Massachusetts (Boston) | 1 |
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pu Wang; Yifeng Lin; Tiesong Zhao – Education and Information Technologies, 2025
With the emergence of Artificial Intelligence (AI), smart education has become an attractive topic. In a smart education system, automated classrooms and examination rooms could help reduce the economic cost of teaching, and thus improve teaching efficiency. However, existing AI algorithms suffer from low surveillance accuracies and high…
Descriptors: Supervision, Artificial Intelligence, Technology Uses in Education, Automation
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Ranger, Jochen; Schmidt, Nico; Wolgast, Anett – Educational and Psychological Measurement, 2023
Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this…
Descriptors: Identification, Cheating, Information Retrieval, Tests
Wei Li; Walter Leite; Jia Quan – Society for Research on Educational Effectiveness, 2023
Background: Multilevel randomized controlled trials (MRCTs) have been widely used to evaluate the causal effects of educational interventions. Traditionally, educational researchers and policymakers focused on the average treatment effects (ATE) of the intervention. Recently there has been an increasing interest in evaluating the heterogeneity of…
Descriptors: Artificial Intelligence, Identification, Hierarchical Linear Modeling, Randomized Controlled Trials
Liu, Zhi; Kong, Xi; Chen, Hao; Liu, Sannyuya; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
In a massive open online courses (MOOCs) learning environment, it is essential to understand students' social knowledge constructs and critical thinking for instructors to design intervention strategies. The development of social knowledge constructs and critical thinking can be represented by cognitive presence, which is a primary component of…
Descriptors: MOOCs, Cognitive Processes, Students, Models
Cingillioglu, Ilker – International Journal of Information and Learning Technology, 2023
Purpose: With the advent of ChatGPT, a sophisticated generative artificial intelligence (AI) tool, maintaining academic integrity in all educational settings has recently become a challenge for educators. This paper discusses a method and necessary strategies to confront this challenge. Design/methodology/approach: In this study, a language model…
Descriptors: Artificial Intelligence, Essays, Integrity, Cheating
Houssam El Aouifi; Mohamed El Hajji; Youssef Es-Saady – Education and Information Technologies, 2024
Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions' reputation and funding. Dropout can occur for a variety of reasons, including academic, financial,…
Descriptors: At Risk Students, Potential Dropouts, Identification, Influences
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Eegdeman, Irene; Cornelisz, Ilja; Meeter, Martijn; van Klaveren, Chris – Education Economics, 2023
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for…
Descriptors: Foreign Countries, Vocational Schools, Dropout Characteristics, Dropout Prevention
Xuandong Zhao – ProQuest LLC, 2024
The rapid advancement of powerful Large Language Models (LLMs), such as ChatGPT and Llama, has revolutionized the world by bringing new creative possibilities and enhancing productivity. However, these advancements also pose significant challenges and risks, including the potential for misuse in the form of fake news, academic dishonesty,…
Descriptors: Computational Linguistics, Intellectual Property, Artificial Intelligence, Productivity
Ben Soussia, Amal; Labba, Chahrazed; Roussanaly, Azim; Boyer, Anne – International Journal of Information and Learning Technology, 2022
Purpose: The goal is to assess performance prediction systems (PPS) that are used to assist at-risk learners. Design/methodology/approach: The authors propose time-dependent metrics including earliness and stability. The authors investigate the relationships between the various temporal metrics and the precision metrics in order to identify the…
Descriptors: Performance, Prediction, Student Evaluation, At Risk Students
Semiu Salawu; Jo Lumsden; Yulan He – International Journal of Bullying Prevention, 2022
A negative consequence of the proliferation of social media is the increase in online abuse. Bullying, once restricted to the playground, has found a new home on social media. Online social networks on their part have intensified efforts to tackle online abuse, but unfortunately, such is the scale of the problem that many young people are still…
Descriptors: Computer Mediated Communication, Bullying, Computer Software, Computational Linguistics
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Lonneke Boels; Enrique Garcia Moreno-Esteva; Arthur Bakker; Paul Drijvers – International Journal of Artificial Intelligence in Education, 2024
As a first step toward automatic feedback based on students' strategies for solving histogram tasks we investigated how strategy recognition can be automated based on students' gazes. A previous study showed how students' task-specific strategies can be inferred from their gazes. The research question addressed in the present article is how data…
Descriptors: Eye Movements, Learning Strategies, Problem Solving, Automation
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Previous Page | Next Page »
Pages: 1 | 2