NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
M. Anthony Machin; Tanya M. Machin; Natalie Gasson – Psychology Learning and Teaching, 2024
Progress in understanding students' development of psychological literacy is critical. However, generative AI represents an emerging threat to higher education which may dramatically impact on student learning and how this learning transfers to their practice. This research investigated whether ChatGPT responded in ways that demonstrated…
Descriptors: Psychology, Higher Education, Artificial Intelligence, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
John S. Y. Lee; Chak Yan Yeung; Zhenqun Yang – Interactive Learning Environments, 2024
A text recommendation system helps language learners find suitable reading materials. Similar to graded readers, most systems assign difficulty levels or school grades to the documents in their database, and then identify the documents that best match the language proficiency of the learner. This graded approach has two main limitations. First,…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Second Language Learning, Language Acquisition
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Qinggui Qin; Shuhan Zhang – Education and Information Technologies, 2025
Artificial Intelligence (AI) plays a vital role in the growth and progress of education. Therefore, there is a need to scientifically explore the application of Artificial Intelligence in Education (AIED) and systematically analyze the development trends and research hotspots of AIED to provide reference for researchers. In this study, 1356…
Descriptors: Artificial Intelligence, Knowledge Level, Visual Aids, Concept Mapping
Peer reviewed Peer reviewed
Direct linkDirect link
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Fei; Huang, Zhenya; Liu, Qi; Chen, Enhong; Yin, Yu; Ma, Jianhui; Wang, Shijin – IEEE Transactions on Learning Technologies, 2023
To provide personalized support on educational platforms, it is crucial to model the evolution of students' knowledge states. Knowledge tracing is one of the most popular technologies for this purpose, and deep learning-based methods have achieved state-of-the-art performance. Compared to classical models, such as Bayesian knowledge tracing, which…
Descriptors: Cognitive Measurement, Diagnostic Tests, Models, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hongxin Yan; Fuhua Lin; Kinshuk – Canadian Journal of Learning and Technology, 2024
Online higher education provides exceptional flexibility in learning but demands high self-regulated learning skills. The deficiency of self-regulated learning skills in many students highlights the need for support. This study introduces a confidence-based adaptive practicing system as an intelligent assessment and tutoring solution to enhance…
Descriptors: Self Management, Online Courses, Intelligent Tutoring Systems, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rho, Jihyun; Rau, Martina A.; Van Veen, Barry D. – International Educational Data Mining Society, 2022
Instruction in many STEM domains heavily relies on visual representations, such as graphs, figures, and diagrams. However, students who lack representational competencies do not benefit from these visual representations. Therefore, students must learn not only content knowledge but also representational competencies. Further, as learning…
Descriptors: Learning Processes, Models, Introductory Courses, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Li; Umapathy, Karthikeyan; Rehman, Muhammad; Ritzhaupt, Albert; Antonyan, Kristine; Shidfar, Poorya; Nichols, James; Lee, Minyoung; Abramowitz, Brian – Journal of Interactive Learning Research, 2023
The purpose of this research study is to design, develop, and validate an instrument for measuring undergraduate students' conceptions of artificial intelligence in education. Following systematic procedures, our team created a conceptual framework through an extant literature review and used it to create an initial item pool of 48-items across…
Descriptors: Undergraduate Students, Knowledge Level, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Mousavinasab, Elham; Zarifsanaiey, Nahid; R. Niakan Kalhori, Sharareh; Rakhshan, Mahnaz; Keikha, Leila; Ghazi Saeedi, Marjan – Interactive Learning Environments, 2021
With the rapid growth of technology, computer learning has become increasingly integrated with artificial intelligence techniques in order to develop more personalized educational systems. These systems are known as Intelligent Tutoring systems (ITSs). This paper focused on the variant characteristics of ITSs developed across different educational…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Individualized Instruction, Web Based Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Chia-Ching; Li, Cheng-Hsuan; Peng, Chin-Cheng – Interactive Learning Environments, 2023
Fighter jets are a critical national asset. Because of the high cost of their manufacture and that of their related equipment, both pilots and maintenance personnel must complete intensive training before coming into contact with a jet. Due to gradual military downsizing, one-on-one training is often impracticable, and the level of familiarization…
Descriptors: Artificial Intelligence, Man Machine Systems, Technology Uses in Education, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Qin, Fen; Li, Kai; Yan, Jianyuan – British Journal of Educational Technology, 2020
Artificial Intelligence (AI) has penetrated the field of education. Trust has long been regarded as a driver for the acceptance of technology. Netnography and interviews were used to investigate trust in AI-based educational systems from the perspective of users. We identified the factors influencing trust in AI-based educational systems and…
Descriptors: Trust (Psychology), Artificial Intelligence, Classification, Context Effect
Previous Page | Next Page ยป
Pages: 1  |  2