Publication Date
In 2025 | 1 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 13 |
Descriptor
Algorithms | 13 |
Artificial Intelligence | 13 |
Learning Management Systems | 13 |
Learning Analytics | 6 |
Models | 6 |
Electronic Learning | 5 |
Decision Making | 4 |
Higher Education | 4 |
Prediction | 4 |
Accuracy | 3 |
College Students | 3 |
More ▼ |
Source
Author
Adjei, Laurene | 1 |
Agbesi, Victor Kwaku | 1 |
Agoritsa Polyzou | 1 |
Ali Darejeh | 1 |
Ankora, Carlos | 1 |
Bensah, Lily | 1 |
Bergamin, Per | 1 |
Broumi, Said, Ed. | 1 |
Comsa, Ioan-Sorin | 1 |
Dragan Gaševic | 1 |
He Xiao | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 9 |
Reports - Evaluative | 2 |
Books | 1 |
Collected Works - General | 1 |
Dissertations/Theses -… | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Secondary Education | 1 |
Audience
Practitioners | 1 |
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Kuadey, Noble Arden; Mahama, Francois; Ankora, Carlos; Bensah, Lily; Maale, Gerald Tietaa; Agbesi, Victor Kwaku; Kuadey, Anthony Mawuena; Adjei, Laurene – Interactive Technology and Smart Education, 2023
Purpose: This study aims to investigate factors that could predict the continued usage of e-learning systems, such as the learning management systems (LMS) at a Technical University in Ghana using machine learning algorithms. Design/methodology/approach: The proposed model for this study adopted a unified theory of acceptance and use of technology…
Descriptors: Foreign Countries, College Students, Learning Management Systems, Student Behavior
Riordan Alfredo; Vanessa Echeverria; Linxuan Zhao; LuEttaMae Lawrence; Jie Xiang Fan; Lixiang Yan; Xinyu Li; Zachari Swiecki; Dragan Gaševic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Despite growing interest in applying human-centred design methods to create learning analytics (LA) systems, most efforts have concentrated on initial design phases, with limited exploration of how LA tools and practices can coevolve during the actual learning and teaching activities. This paper examines how a human-centred LA dashboard can be…
Descriptors: Learning Analytics, Learning Management Systems, Artificial Intelligence, Computer Software
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Md Akib Zabed Khan; Agoritsa Polyzou – Journal of Educational Data Mining, 2024
In higher education, academic advising is crucial to students' decision-making. Data-driven models can benefit students in making informed decisions by providing insightful recommendations for completing their degrees. To suggest courses for the upcoming semester, various course recommendation models have been proposed in the literature using…
Descriptors: Academic Advising, Courses, Data Use, Artificial Intelligence
Tayebeh Sargazi Moghadam; Ali Darejeh; Mansoureh Delaramifar; Sara Mashayekh – Interactive Learning Environments, 2024
Learners' emotional states might change during the learning process, and unpredictable variations of a person's emotions raise the demand for regular assessment of feelings during learning. In this paper, an AI-based decision framework is proposed and implemented for e-learning systems that identify suitable micro-brake activities based on the…
Descriptors: Artificial Intelligence, Decision Making, Electronic Learning, Psychological Patterns
Hongyu Xie; He Xiao; Yu Hao – International Journal of Web-Based Learning and Teaching Technologies, 2024
Modern e-learning system is a representative service form in innovative service industry. This paper designs a personalized service domain system, optimizes various parameters and can be applied to different education quality evaluation, and proposes a decision tree recommendation algorithm. Information gain is carried out through many existing…
Descriptors: Artificial Intelligence, Electronic Learning, Individualized Instruction, Models
Taylor, Kevin – Education and Culture, 2022
For Dewey, growth in the educative process means education that enriches and expands one's experience as it prepares students for not only a vocation but also entry into and transaction with the world. In few places can we see growth, generally understood, to be occurring as fast as in big data technology. This essay begins with an overview of…
Descriptors: Educational Philosophy, Educational Development, Technology Uses in Education, Learning Analytics
Murad, Dina Fitria; Murad, Silvia Ayunda; Irsan, Muhamad – Journal of Educators Online, 2023
This study discusses the use of an online learning recommendation system as a smart solution related to changing the face-to-face learning process to online. This study uses user-based collaborative filtering, item-based collaborative filtering, and hybrid collaborative filtering. This research was conducted in two stages using the KNN machine…
Descriptors: Online Courses, Grades (Scholastic), Prediction, Context Effect
Olga Ovtšarenko – Discover Education, 2024
Machine learning (ML) methods are among the most promising technologies with wide-ranging research opportunities, particularly in the field of education, where they can be used to enhance student learning outcomes. This study explores the potential of machine learning algorithms to build and train models using log data from the "3D…
Descriptors: Artificial Intelligence, Algorithms, Technology Uses in Education, Opportunities
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Broumi, Said, Ed. – IGI Global, 2023
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods…
Descriptors: Theories, Mathematical Logic, Intuition, Decision Making
Ni Li – International Journal of Web-Based Learning and Teaching Technologies, 2025
In depth exploration of how the pandemic has reshaped the education ecosystem over the past three years, especially in the context of the surge in demand for online education courses and learning platforms, this article focuses on the field of student ideological and political education, and innovatively constructs a moral and political education…
Descriptors: Artificial Intelligence, Computer Software, Technology Integration, Algorithms