Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Algorithms | 4 |
Artificial Intelligence | 4 |
Monte Carlo Methods | 4 |
Bayesian Statistics | 2 |
Guidelines | 2 |
Models | 2 |
Simulation | 2 |
Accuracy | 1 |
Benchmarking | 1 |
Computation | 1 |
Computer Software | 1 |
More ▼ |
Author
A. M. Sadek | 1 |
Abolfazl Asudeh | 1 |
Fahad Al-Muhlaki | 1 |
Gelman, Andrew | 1 |
Gyeongcheol Cho | 1 |
Hadis Anahideh | 1 |
Heungsun Hwang | 1 |
Nazanin Nezami | 1 |
Vehtari, Aki | 1 |
Yao, Yuling | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods