Publication Date
In 2025 | 1 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 12 |
Descriptor
Algorithms | 12 |
Artificial Intelligence | 12 |
Outcomes of Education | 12 |
Prediction | 8 |
Models | 6 |
Accuracy | 5 |
Higher Education | 5 |
Learning Analytics | 5 |
Academic Achievement | 4 |
College Students | 4 |
Computer Software | 4 |
More ▼ |
Source
Author
Abdullahi Yusuf | 1 |
Amit Kumar Thakur | 1 |
Anaelle Emma Gackiere | 1 |
Daniel A. Guberman | 1 |
Dave Darshan | 1 |
David B. Nelson | 1 |
Ean Teng Khor | 1 |
Fatima, Saba | 1 |
Henry Chang | 1 |
K. Jothimani | 1 |
Kamdjou, Herve D. Teguim | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 8 |
Dissertations/Theses -… | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Elementary Education | 1 |
Audience
Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Pooja Rana; Mithilesh Kumar Dubey; Lovi Raj Gupta; Amit Kumar Thakur – Interactive Learning Environments, 2024
In recent years, the system of student learning and academic emotions has been taken seriously to re-engineer the teaching-learning process at all levels of education. This research paper considers both aspects of assessing the translation of knowledge i.e. qualitative and quantitative. In the current scenario, quantitative and qualitative…
Descriptors: Educational Assessment, Outcomes of Education, Models, Evaluation Methods
Kukkar, Ashima; Mohana, Rajni; Sharma, Aman; Nayyar, Anand – Education and Information Technologies, 2023
Predicting student performance is crucial in higher education, as it facilitates course selection and the development of appropriate future study plans. The process of supporting the instructors and supervisors in monitoring students in order to upkeep them and combine training programs to get the best outcomes. It decreases the official warning…
Descriptors: Academic Achievement, Mental Health, Well Being, Interaction
Fatima, Saba – ProQuest LLC, 2023
Predicting students' performance to identify which students are at risk of receiving a D/Fail/Withdraw (DFW) grade and ensuring their timely graduation is not just desirable but also necessary in most educational entities. In the US, not only is the Science, Technology, Engineering, and Mathematics (STEM) major becoming less popular among…
Descriptors: Artificial Intelligence, Prediction, Outcomes of Education, At Risk Students
Kamdjou, Herve D. Teguim – Open Education Studies, 2023
This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach…
Descriptors: Outcomes of Education, Artificial Intelligence, Human Capital, Regression (Statistics)
David B. Nelson; Anaelle Emma Gackiere; Samantha Elizabeth LeGrand; Daniel A. Guberman – Thresholds in Education, 2025
In response to the significant disruption posed by emergent AI technology, we propose a four part framework for teaching and learning practice and development. Rather than focus on the specific technologies of the moment, this framework provides actionable suggestions for individuals with varying views of AI and its positive and negative…
Descriptors: Teaching Methods, Learning Processes, Algorithms, Artificial Intelligence
A Human-Centric Automated Essay Scoring and Feedback System for the Development of Ethical Reasoning
Lee, Alwyn Vwen Yen; Luco, Andrés Carlos; Tan, Seng Chee – Educational Technology & Society, 2023
Although artificial Intelligence (AI) is prevalent and impacts facets of daily life, there is limited research on responsible and humanistic design, implementation, and evaluation of AI, especially in the field of education. Afterall, learning is inherently a social endeavor involving human interactions, rendering the need for AI designs to be…
Descriptors: Essays, Scoring, Writing Evaluation, Computer Software