NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Edwin Gonzalo Vargas; Andrés Chiappe; Julio Durand – Journal of Social Studies Education Research, 2024
This review explores how artificial intelligence (AI henceforth) can reshape education through insights from situated learning literature. The objective was to critically examine opportunities and challenges of situated learning, and how AI could augment strengths while overcoming obstacles. A systematic review using the PRISMA method analyzed 60…
Descriptors: Artificial Intelligence, Situated Learning, Computer Software, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Nazempour, Rezvan – ProQuest LLC, 2023
Educational Data Mining (EDM) is an emerging field that aims to better understand students' behavior patterns and learning environments by employing statistical and machine learning methods to analyze large repositories of educational data. Analysis of variable data in the early stages of a course might be used to develop a comprehensive…
Descriptors: Artificial Intelligence, Outcomes of Education, Electronic Learning, Educational Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chia-An; Tzeng, Jian-Wei; Huang, Nen-Fu; Su, Yu-Sheng – Educational Technology & Society, 2021
Massive open online courses (MOOCs) provide numerous open-access learning resources and allow for self-directed learning. The application of big data and artificial intelligence (AI) in MOOCs help comprehend raw educational data and enrich the learning process for students and instructors. Thus, we created two deep neural network models. The first…
Descriptors: Grade Prediction, Online Courses, Student Behavior, Independent Study
Peer reviewed Peer reviewed
Direct linkDirect link
Xuewang Geng; Masanori Yamada – SAGE Open, 2025
The development of information and communication technologies has created limitless prospects for using augmented reality (AR) in various fields. Unfortunately, the multitasking nature of AR systems prevents learners from successfully reflecting and retaining knowledge. This study developed and designed a learning analytics dashboard (LAD) with…
Descriptors: Metacognition, Learning Management Systems, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Sancenon, Vicente; Wijaya, Kharisma; Wen, Xavier Yue Shu; Utama, Diaz Adi; Ashworth, Mark; Ng, Kelvin Hongrui; Cheong, Alicia; Neo, Zhizhong – International Journal of Virtual and Personal Learning Environments, 2022
Although there is increasing acceptance that personalization improves learning outcomes, there is still limited experimental evidence supporting this claim. The aim of this study was to implement and evaluate the effectiveness of an adaptive recommendation system for Singapore primary and secondary education. The system leverages users trace data…
Descriptors: Academic Achievement, Electronic Learning, Learning Analytics, Learning Processes
Tai Trong Bui; Son Truong Nguyen – Online Submission, 2023
This study addresses a gap in the literature regarding the implementation of digital strategies in educational institutions, particularly universities. Despite significant advancements in the development of digital strategies, there remains a lack of commitment and vision for their effective implementation. This study systematically reviewed the…
Descriptors: Meta Analysis, Educational Change, Teaching Methods, Learning Processes
Previous Page | Next Page »
Pages: 1  |  2