NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Bui, Ngoc Van P. – ProQuest LLC, 2022
This research explores the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve the performance and explainability of artificial intelligence (AI) and machine learning (ML) models predicting at-risk students. Explainable predictions provide students and educators with more insight into at-risk indicators and…
Descriptors: Artificial Intelligence, At Risk Students, Prediction, Data Science
Preel-Dumas, Camille; Hendra, Richard; Denison, Dakota – MDRC, 2023
This brief explores data science methods that workforce programs can use to predict participant success. With access to vast amounts of data on their programs, workforce training providers can leverage their management information systems (MIS) to understand and improve their programs' outcomes. By predicting which participants are at greater risk…
Descriptors: Labor Force Development, Programs, Prediction, Success