NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 45 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Milos Ilic; Goran Kekovic; Vladimir Mikic; Katerina Mangaroska; Lazar Kopanja; Boban Vesin – IEEE Transactions on Learning Technologies, 2024
In recent years, there has been an increasing trend of utilizing artificial intelligence (AI) methodologies over traditional statistical methods for predicting student performance in e-learning contexts. Notably, many researchers have adopted AI techniques without conducting a comprehensive investigation into the most appropriate and accurate…
Descriptors: Artificial Intelligence, Academic Achievement, Prediction, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lishan Zhang; Linyu Deng; Sixv Zhang; Ling Chen – IEEE Transactions on Learning Technologies, 2024
With the popularity of online one-to-one tutoring, there are emerging concerns about the quality and effectiveness of this kind of tutoring. Although there are some evaluation methods available, they are heavily relied on manual coding by experts, which is too costly. Therefore, using machine learning to predict instruction quality automatically…
Descriptors: Automation, Classification, Artificial Intelligence, Tutoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kudzayi Savious Tarisayi; Ronald Manhibi – Journal of Learning and Teaching in Digital Age, 2025
This paper critically examines the transformative potential of Artificial Intelligence (AI) in Zimbabwe's higher education system, focusing on how AI can enhance learning outcomes and optimize administrative processes. The study employs a qualitative research approach, gathering insights from key stakeholders in the educational sector to identify…
Descriptors: Foreign Countries, Artificial Intelligence, Technology Uses in Education, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2023
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can…
Descriptors: Equal Education, Mathematics Education, Word Problems (Mathematics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Xiaoqiu; Dugdale, Deborah M.; Wei, Xin; Mi, Wenjuan – American Journal of Distance Education, 2023
The recent surge of online language learning services in the past decade has benefitted second language learners. However, there is a lack of understanding of whether learners, especially young learners, are engaged in online learning, and how educators can enhance the engagement of the online learning experience. This study examines an artificial…
Descriptors: Artificial Intelligence, Prediction, Electronic Learning, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Fei; Huang, Zhenya; Liu, Qi; Chen, Enhong; Yin, Yu; Ma, Jianhui; Wang, Shijin – IEEE Transactions on Learning Technologies, 2023
To provide personalized support on educational platforms, it is crucial to model the evolution of students' knowledge states. Knowledge tracing is one of the most popular technologies for this purpose, and deep learning-based methods have achieved state-of-the-art performance. Compared to classical models, such as Bayesian knowledge tracing, which…
Descriptors: Cognitive Measurement, Diagnostic Tests, Models, Prediction
Fancsali, Stephen E.; Holstein, Kenneth; Sandbothe, Michael; Ritter, Steven; McLaren, Bruce M.; Aleven, Vincent – Grantee Submission, 2020
Extensive literature in artificial intelligence in education focuses on developing automated methods for detecting cases in which students struggle to master content while working with educational software. Such cases have often been called "wheel-spinning," "unproductive persistence," or "unproductive struggle." We…
Descriptors: Artificial Intelligence, Automation, Persistence, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Chu, Hui-Chun; Hwang, Gwo-Haur; Tu, Yun-Fang; Yang, Kai-Hsiang – Australasian Journal of Educational Technology, 2022
Artificial intelligence (AI) in higher education has proven to be a useful learning technology; it can help learners achieve positive learning outcomes in the learning environment and can also enable teachers to better understand learners' learning status and further improve their teaching strategies. This study reviewed the top 50 AI in higher…
Descriptors: Artificial Intelligence, Higher Education, Trend Analysis, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Xizhe Wang; Yihua Zhong; Changqin Huang; Xiaodi Huang – IEEE Transactions on Learning Technologies, 2024
Reading comprehension is a widely adopted method for learning English, involving reading articles and answering related questions. However, the reading comprehension training typically focuses on the skill level required for a standardized learning stage, without considering the impact of individual differences in linguistic competence. This…
Descriptors: Reading Comprehension, Artificial Intelligence, Computer Software, Synchronous Communication
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hongxin Yan; Fuhua Lin; Kinshuk – Canadian Journal of Learning and Technology, 2024
Online higher education provides exceptional flexibility in learning but demands high self-regulated learning skills. The deficiency of self-regulated learning skills in many students highlights the need for support. This study introduces a confidence-based adaptive practicing system as an intelligent assessment and tutoring solution to enhance…
Descriptors: Self Management, Online Courses, Intelligent Tutoring Systems, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Brattin, Rick; Sexton, Randall S.; Yin, Wenqiang; Wheatley, Brittaney – Education and Information Technologies, 2019
Like many other service organizations, drop-in peer tutoring centers often struggle to determine the required number of qualified tutors necessary to meet learner expectations. Service work is largely a response to probabilistic calls for staff action and therefore difficult to forecast with precision. Moreover, forecasting models under long…
Descriptors: Peer Teaching, Tutoring, Artificial Intelligence, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3