NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wenyi Lu; Joseph Griffin; Troy D. Sadler; James Laffey; Sean P. Goggins – Journal of Learning Analytics, 2025
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school…
Descriptors: Game Based Learning, Predictor Variables, Evaluation Methods, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Baig, Maria Ijaz; Yadegaridehkordi, Elaheh; Shuib, Liyana; Sallehuddin, Hasimi – Education and Information Technologies, 2023
Even though big data offers new opportunities to organizations, big data adoption (BDA) is still in the early stages of introduction, and its determinants remain unclear in many sectors. Therefore, this research intended to identify the determinants of BDA in the education sector. A theoretical model was developed based on the integration of the…
Descriptors: Foreign Countries, Learning Analytics, Higher Education, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Umar Bin Qushem; Solomon Sunday Oyelere; Gökhan Akçapinar; Rogers Kaliisa; Mikko-Jussi Laakso – Technology, Knowledge and Learning, 2024
Predicting academic performance for students majoring in computer science has long been a significant field of research in computing education. Previous studies described that accurate prediction of students' early-stage performance could identify low-performing students and take corrective action to improve performance. Besides, adopting machine…
Descriptors: Predictor Variables, Learning Analytics, At Risk Students, Computer Science
Peer reviewed Peer reviewed
Direct linkDirect link
Raj, Nisha S.; V. G., Renumol – E-Learning and Digital Media, 2022
Learning analytics aims at helping the students to attain their learning goals. The predictions in learning analytics are made to enhance the effectiveness of educational interferences. This study predicts student engagement at an early phase of a Virtual Learning Environment (VLE) course by analyzing data collected from consecutive years. The…
Descriptors: Foreign Countries, Learner Engagement, Virtual Classrooms, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
So, Joseph Chi-Ho; Ho, Yik Him; Wong, Adam Ka-Lok; Chan, Henry C. B.; Tsang, Kia Ho-Yin; Chan, Ada Pui-Ling; Wong, Simon Chi-Wang – IEEE Transactions on Learning Technologies, 2023
Generic competence (GC) development is an integral part of higher education to provide holistic education and enhance student career development. It also plays a critical role in complementing the curriculum. Many tertiary institutions provide various GC development activities (GCDA). Moreover, institutions strongly need to further understand…
Descriptors: Predictor Variables, Higher Education, Online Courses, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Besbes, Seifeddine; Twala, Bhekisipho; Besbes, Riadh – Journal of Educational Technology Systems, 2022
In this paper, an empirical comparison of three state-of-the-art classifier methods (artificial immune recognition systems, Lazy-K Star, and random tree) to predict teachers' ability to adapt in a classroom environment is carried out. Two educational databases are used for this task. First, measures collected in an academic context, especially…
Descriptors: Instructional Effectiveness, Learning Analytics, Adjustment (to Environment), Classroom Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gedrimiene, Egle; Celik, Ismail; Mäkitalo, Kati; Muukkonen, Hanni – Journal of Learning Analytics, 2023
Transparency and trustworthiness are among the key requirements for the ethical use of learning analytics (LA) and artificial intelligence (AI) in the context of social inclusion and equity. However, research on these issues pertaining to users is lacking, leaving it unclear as to how transparent and trustworthy current LA tools are for their…
Descriptors: Learning Analytics, Accountability, Trust (Psychology), Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Hilpert, Jonathan C.; Greene, Jeffrey A.; Bernacki, Matthew – British Journal of Educational Technology, 2023
Capturing evidence for dynamic changes in self-regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform…
Descriptors: Learning Theories, Independent Study, Artificial Intelligence, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Okoye, Kingsley; Arrona-Palacios, Arturo; Camacho-Zuñiga, Claudia; Achem, Joaquín Alejandro Guerra; Escamilla, Jose; Hosseini, Samira – Education and Information Technologies, 2022
Recent trends in "educational technology" have led to emergence of methods such as teaching analytics (TA) in understanding and management of the teaching-learning processes. Didactically, "teaching analytics" is one of the promising and emerging methods within the Education domain that have proved to be useful, towards…
Descriptors: Learning Analytics, Student Evaluation of Teacher Performance, Information Retrieval, Educational Technology
Mohammed Alzaid – ProQuest LLC, 2022
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming…
Descriptors: Learning Analytics, Self Evaluation (Individuals), Programming, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Morsy, Sara; Karypis, George – International Educational Data Mining Society, 2019
Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection as well as for designing personalized degree plans and modifying them based on their performance. One of the successful approaches for accurately predicting a student's grades in future courses is…
Descriptors: Grades (Scholastic), Models, Prediction, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khosravi, Hassan; Shabaninejad, Shiva; Bakharia, Aneesha; Sadiq, Shazia; Indulska, Marta; Gasevic, Dragan – Journal of Learning Analytics, 2021
Learning analytics dashboards commonly visualize data about students with the aim of helping students and educators understand and make informed decisions about the learning process. To assist with making sense of complex and multidimensional data, many learning analytics systems and dashboards have relied strongly on AI algorithms based on…
Descriptors: Learning Analytics, Visual Aids, Artificial Intelligence, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Sharma, Kshitij; Papamitsiou, Zacharoula; Giannakos, Michail – British Journal of Educational Technology, 2019
Students' on-task engagement during adaptive learning activities has a significant effect on their performance, and at the same time, how these activities influence students' behavior is reflected in their effort exertion. Capturing and explaining effortful (or effortless) behavior and aligning it with learning performance within contemporary…
Descriptors: Learning Activities, Learning Analytics, Man Machine Systems, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2