NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Youngjin Lee – Education and Information Technologies, 2025
This study investigates the development and evaluation of a Retrieval-Augmented Generation (RAG)-based statistics tutor designed to assist students with quantitative analysis methods. The RAG approach was employed to address the well-documented issue of hallucination in Large Language Models (LLMs). A computer tutor was developed that utilizes…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Teachers, Students
Walter L. Leite; Samrat Roy; Nilanjana Chakraborty; George Michailidis; A. Corinne Huggins-Manley; Sidney K. D'Mello; Mohamad Kazem Shirani Faradonbeh; Emily Jensen; Huan Kuang; Zeyuan Jing – Grantee Submission, 2022
This study presents a novel video recommendation system for an algebra virtual learning environment (VLE) that leverages ideas and methods from engagement measurement, item response theory, and reinforcement learning. Following Vygotsky's Zone of Proximal Development (ZPD) theory, but considering low affect and high affect students separately, we…
Descriptors: Artificial Intelligence, Video Technology, Technology Uses in Education, Program Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Holmes, Mike; Latham, Annabel; Crockett, Keeley; O'Shea, James D. – IEEE Transactions on Learning Technologies, 2018
Comprehension is an important cognitive state for learning. Human tutors recognize comprehension and non-comprehension states by interpreting learner non-verbal behavior (NVB). Experienced tutors adapt pedagogy, materials, and instruction to provide additional learning scaffold in the context of perceived learner comprehension. Near real-time…
Descriptors: Comprehension, Classification, Artificial Intelligence, Networks
Dragon, Toby – ProQuest LLC, 2013
This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…
Descriptors: Coaching (Performance), Integrated Activities, Inquiry, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Magnisalis, I.; Demetriadis, S.; Karakostas, A. – IEEE Transactions on Learning Technologies, 2011
This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…
Descriptors: Evidence, Instructional Design, Bibliographic Databases, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Mitrovic, Antonija; Martin, Brent; Suraweera, Pramuditha; Zakharov, Konstantin; Milik, Nancy; Holland, Jay; McGuigan, Nicholas – International Journal of Artificial Intelligence in Education, 2009
Over the last decade, the Intelligent Computer Tutoring Group (ICTG) has implemented many successful constraint-based Intelligent Tutoring Systems (ITSs) in a variety of instructional domains. Our tutors have proven their effectiveness not only in controlled lab studies but also in real classrooms, and some of them have been commercialized.…
Descriptors: Foreign Countries, Investment, Intelligent Tutoring Systems, Artificial Intelligence