Publication Date
In 2025 | 2 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Artificial Intelligence | 9 |
Readability | 9 |
Natural Language Processing | 8 |
Computational Linguistics | 4 |
Computer Software | 4 |
Readability Formulas | 4 |
Accuracy | 3 |
Classification | 3 |
Cues | 3 |
Reading Comprehension | 3 |
Comparative Analysis | 2 |
More ▼ |
Author
Balyan, Renu | 3 |
McCarthy, Kathryn S. | 3 |
McNamara, Danielle S. | 3 |
Danielle S. McNamara | 2 |
Jeevan Chapagain | 2 |
Priti Oli | 2 |
Rabin Banjade | 2 |
Vasile Rus | 2 |
Ana Arruarte | 1 |
Andrew J. Karter | 1 |
Arun-Balajiee… | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 4 |
Speeches/Meeting Papers | 3 |
Information Analyses | 1 |
Education Level
Secondary Education | 3 |
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Canada | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level… | 3 |
Flesch Reading Ease Formula | 1 |
What Works Clearinghouse Rating
Suna-Seyma Uçar; Itziar Aldabe; Nora Aranberri; Ana Arruarte – International Journal of Artificial Intelligence in Education, 2024
Current student-centred, multilingual, active teaching methodologies require that teachers have continuous access to texts that are adequate in terms of topic and language competence. However, the task of finding appropriate materials is arduous and time consuming for teachers. To build on automatic readability assessment research that could help…
Descriptors: Artificial Intelligence, Technology Uses in Education, Automation, Readability
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics

Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Renu Balyan; Danielle S. McNamara; Scott A. Crossley; William Brown; Andrew J. Karter; Dean Schillinger – Grantee Submission, 2022
Online patient portals that facilitate communication between patient and provider can improve patients' medication adherence and health outcomes. The effectiveness of such web-based communication measures can be influenced by the health literacy (HL) of a patient. In the context of diabetes, low HL is associated with severe hypoglycemia and high…
Descriptors: Computational Linguistics, Patients, Physicians, Information Security

Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Xuefan Li; Tingsong Li; Minjuan Wang; Sining Tao; Xiaoxu Zhou; Xiaoqing Wei; Naiqing Guan – IEEE Transactions on Learning Technologies, 2025
With the rapid advancement of generative artificial intelligence (GAI), its application in educational settings has increasingly become a focal point, particularly in enhancing students' analytical capabilities. This study examines the effectiveness of the ChatGPT prompt framework in improving text analysis skills among students, specifically…
Descriptors: Artificial Intelligence, Technology Uses in Education, High School Students, Foreign Countries
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Journal of Artificial Intelligence in Education, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction