Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 9 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Algorithms | 9 |
Artificial Intelligence | 9 |
Regression (Statistics) | 9 |
Models | 5 |
Prediction | 5 |
Accuracy | 4 |
Bayesian Statistics | 3 |
Statistical Inference | 3 |
Academic Achievement | 2 |
Causal Models | 2 |
Classification | 2 |
More ▼ |
Source
Grantee Submission | 3 |
Malaysian Online Journal of… | 1 |
Measurement:… | 1 |
Online Learning | 1 |
Open Education Studies | 1 |
ProQuest LLC | 1 |
Society for Research on… | 1 |
Author
George Perrett | 2 |
Vincent Dorie | 2 |
A. Brooks Bowden | 1 |
Anika Alam | 1 |
Benjamin Goodrich | 1 |
Fatih Bingül | 1 |
Gelman, Andrew | 1 |
Il Do Ha | 1 |
Jennifer Hill | 1 |
Jennifer L. Hill | 1 |
Kamdjou, Herve D. Teguim | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 6 |
Dissertations/Theses -… | 1 |
Education Level
Elementary Education | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
Grade 10 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
More ▼ |
Audience
Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Kye, Anna – ProQuest LLC, 2023
Every year, the national high school graduation rate is declining and impacting the number of students applying to colleges. Moreover, the majority of students are applying to more than one college. This makes a lot of colleges to be highly competitive in student recruitment for enrollment and thus, the necessity for institutions to anticipate…
Descriptors: Comparative Analysis, Classification, College Enrollment, Prediction
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Kamdjou, Herve D. Teguim – Open Education Studies, 2023
This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach…
Descriptors: Outcomes of Education, Artificial Intelligence, Human Capital, Regression (Statistics)
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students