NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alanah Grant St. James; Luke Hand; Thomas Mills; Liwen Song; Annabel S. J. Brunt; Patrick E. Bergstrom Mann; Andrew F. Worrall; Malcolm I. Stewart; Claire Vallance – Journal of Chemical Education, 2023
Applications of machine learning in chemistry are many and varied, from prediction of structure-property relationships, to modeling of potential energy surfaces for large scale atomistic simulations. We describe a generalized approach for the application of machine learning to the classification of spectra which can be used as the basis for a wide…
Descriptors: Artificial Intelligence, Chemistry, Science Instruction, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amy Adair; Ellie Segan; Janice Gobert; Michael Sao Pedro – Grantee Submission, 2023
Developing models and using mathematics are two key practices in internationally recognized science education standards, such as the Next Generation Science Standards (NGSS). However, students often struggle with these two intersecting practices, particularly when developing mathematical models about scientific phenomena. Formative…
Descriptors: Artificial Intelligence, Mathematical Models, Science Process Skills, Inquiry
Peer reviewed Peer reviewed
Hoggard, Franklin R. – Journal of Chemical Education, 1987
Suggests a method for solving verbal problems in chemistry using a linguistic algorithm that is partly adapted from two artificial intelligence languages. Provides examples of problems solved using the mental concepts of translation, rotation, mirror image symmetry, superpositioning, disjoininng, and conjoining. (TW)
Descriptors: Algorithms, Artificial Intelligence, Chemical Nomenclature, Chemical Reactions