Publication Date
In 2025 | 3 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 11 |
Descriptor
Algorithms | 11 |
Artificial Intelligence | 11 |
Student Characteristics | 11 |
Prediction | 5 |
Accuracy | 3 |
At Risk Students | 3 |
Attendance | 3 |
Computer Software | 3 |
Learning Analytics | 3 |
Models | 3 |
Bias | 2 |
More ▼ |
Source
Author
A. Brooks Bowden | 1 |
Abdellah Idrissi | 1 |
Aicha Er-Rafyg | 1 |
Anika Alam | 1 |
Chang, Hua-hua | 1 |
Christina Weiland | 1 |
Dongkun Han | 1 |
Erin Smith | 1 |
Hans-Georg Müller | 1 |
Henry Chang | 1 |
Jialun Pan | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 8 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Education Level
Elementary Education | 4 |
Higher Education | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Grade 10 | 1 |
Grade 3 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
More ▼ |
Audience
Location
Denmark | 1 |
Hong Kong | 1 |
Massachusetts (Boston) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Aicha Er-Rafyg; Abdellah Idrissi; Kaoutar El Handri – International Journal of Learning Technology, 2025
In today's digital age, online courses have become a valuable tool for learners to acquire new skills and knowledge. The global outbreak of COVID-19 has further accelerated the adoption of online learning as education service providers are forced to move their courses online to ensure the continuity of education. However, with many online courses,…
Descriptors: Technology Uses in Education, Online Courses, Artificial Intelligence, Information Systems
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Nathalie Rzepka; Linda Fernsel; Hans-Georg Müller; Katharina Simbeck; Niels Pinkwart – Computer-Based Learning in Context, 2023
Algorithms and machine learning models are being used more frequently in educational settings, but there are concerns that they may discriminate against certain groups. While there is some research on algorithmic fairness, there are two main issues with the current research. Firstly, it often focuses on gender and race and ignores other groups.…
Descriptors: Algorithms, Artificial Intelligence, Models, Bias
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Siu-Cheung Kong; Wei Shen – Interactive Learning Environments, 2024
Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected…
Descriptors: Student Characteristics, Predictor Variables, Comprehension, Computation
Madeline Day Price; Erin Smith; R. Alex Smith – International Journal of Education in Mathematics, Science and Technology, 2024
Storylines exist about the types of learners who participate and excel in mathematics. To understand how AI chatbots participate in such storylines, we examined ChatGPT's feedback to different learners' mathematical writing in an exploratory study. Learners included academic labels, like gifted and special education, and race/ethnicity, like Black…
Descriptors: Mathematics Education, Artificial Intelligence, Story Telling, Student Characteristics
Taylor V. Williams – ProQuest LLC, 2022
Clustering, a prevalent class of machine learning (ML) algorithms used in data mining and pattern-finding--has increasingly helped engineering education researchers and educators see and understand assessment patterns at scale. However, a challenge remains to make ML-enabled educational inferences that are useful and reliable for research or…
Descriptors: Multivariate Analysis, Data Analysis, Student Evaluation, Large Group Instruction
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Marie-Monique Schaper; Mariana Aki Tamashiro; Rachel Charlotte Smith; Ole Sejer Iversen – ACM Transactions on Computing Education, 2025
As emerging technologies are rapidly advancing as part of our societies and everyday life, it is crucial to include and empower all students in learning about computing and advanced technologies. These include technical capabilities of algorithms, such as the use of AI, that enable novel interactions between humans and their environment and give…
Descriptors: Inclusion, Artificial Intelligence, Student Empowerment, Algorithms
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students