NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sandra Wankmüller – Sociological Methods & Research, 2024
Transformer-based models for transfer learning have the potential to achieve high prediction accuracies on text-based supervised learning tasks with relatively few training data instances. These models are thus likely to benefit social scientists that seek to have as accurate as possible text-based measures, but only have limited resources for…
Descriptors: Social Science Research, Transfer of Training, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Salomé Do; Étienne Ollion; Rubing Shen – Sociological Methods & Research, 2024
The last decade witnessed a spectacular rise in the volume of available textual data. With this new abundance came the question of how to analyze it. In the social sciences, scholars mostly resorted to two well-established approaches, human annotation on sampled data on the one hand (either performed by the researcher, or outsourced to…
Descriptors: Computation, Social Sciences, Natural Language Processing, Artificial Intelligence
C. M. Downey – ProQuest LLC, 2024
Advances in Natural Language Processing (NLP) over the past decade have largely been driven by the scale of data and computation used to train large neural network-based models. However, these techniques are inapplicable to the vast majority of the world's languages, which lack the vast digitized text datasets available for English and a few other…
Descriptors: Multilingualism, Natural Language Processing, Transfer of Training, Second Language Learning
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning