NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alvarez, Niurys Lázaro; Callejas, Zoraida; Griol, David – Journal of Technology and Science Education, 2020
We present an educational data analytics case study aimed at the early detection of potential dropout in Computer Engineering studies in Cuba. We have employed institutional data of 456 students and performed several experiments for predicting their permanency into three (promotion, repetition, and dropout) or two classes (promoting, not…
Descriptors: Foreign Countries, College Students, Computer Science Education, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Naseem, Mohammed; Chaudhary, Kaylash; Sharma, Bibhya – Education and Information Technologies, 2022
The need for a knowledge-based society has perpetuated an increasing demand for higher education around the globe. Recently, there has been an increase in the demand for Computer Science professionals due to the rise in the use of ICT in the business, health and education sector. The enrollment numbers in Computer Science undergraduate programmes…
Descriptors: College Freshmen, Student Attrition, School Holding Power, Dropout Prevention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Varga, Erika B.; Sátán, Ádám – Hungarian Educational Research Journal, 2021
The purpose of this paper is to investigate the pre-enrollment attributes of first-year students at Computer Science BSc programs of the University of Miskolc, Hungary in order to find those that mostly contribute to failure on the Programming Basics first-semester course and, consequently to dropout. Our aim is to detect at-risk students early,…
Descriptors: Identification, At Risk Students, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rodríguez, M. Elena; Guerrero-Roldán, Ana Elena; Baneres, David; Karadeniz, Abdulkadir – International Review of Research in Open and Distributed Learning, 2022
This work discusses a nudging intervention mechanism combined with an artificial intelligence (AI) system for early detection of learners' risk of failing or dropping out. Different types of personalized nudges were designed according to educational principles and the learners' risk classification. The impact on learners' performance, dropout…
Descriptors: Artificial Intelligence, Electronic Learning, College Students, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Alonso-Mencía, M. Elena; Alario-Hoyos, Carlos; Estévez-Ayres, Iria; Delgado Kloos, Carlos – Australasian Journal of Educational Technology, 2021
Massive open online courses (MOOCs) require registered learners to be autonomous in their learning. Nevertheless, prior research studies showed that many learners lack the necessary self-regulated learning (SRL) skills to succeed in MOOCs. This research study aimed to gain insights into the relationships that exist between SRL and background…
Descriptors: Self Management, Independent Study, Learning Strategies, Online Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alfermann, Dorothee; Holl, Christopher; Reimann, Swantje – International Journal of Higher Education, 2021
Evidence in the literature indicates that doctoral candidates may experience increased levels of stress and worry about successfully completing their doctorate degrees. As a result, a significant number of doctoral candidates drop out. In our study with 424 doctoral students in computer science (113 women, 311 men), we ask about the frequency of…
Descriptors: Doctoral Students, Doctoral Programs, Dropout Characteristics, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Brown, Michael; DeMonbrun, R. Matthew; Teasley, Stephanie – Journal of Learning Analytics, 2018
In this study, we develop and test four measures for conceptualizing the potential impact of co-enrollment in different courses on students' changing risk for academic difficulty and recovery from academic difficulty in a focal course. We offer four predictors, two related to instructional complexity and two related to structural complexity (the…
Descriptors: At Risk Students, Dropout Prevention, Difficulty Level, College Curriculum
Peer reviewed Peer reviewed
PDF on ERIC Download full text
English, Hilary – Bulgarian Comparative Education Society, 2012
This paper presents the findings of a study on software development students from economically disadvantaged backgrounds that have dropped out of universities which have a strong research emphasis. In the UK, these universities are generally part of the Russell Group of Universities. The participants were all male, mainly black, working class and…
Descriptors: Foreign Countries, Economically Disadvantaged, College Students, Research Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers