NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alcaraz, Raul; Martinez-Rodrigo, Arturo; Zangroniz, Roberto; Rieta, Jose Joaquin – IEEE Transactions on Learning Technologies, 2021
Early warning systems (EWSs) have proven to be useful in identifying students at risk of failing both online and conventional courses. Although some general systems have reported acceptable ability to work in modules with different characteristics, those designed from a course-specific perspective have recently provided better outcomes. Hence, the…
Descriptors: Prediction, At Risk Students, Academic Failure, Electronic Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Foster, Ed; Siddle, Rebecca – Assessment & Evaluation in Higher Education, 2020
In this article we investigate the effectiveness of learning analytics for identifying at-risk students in higher education institutions using data output from an in-situ learning analytics platform. Amongst other things, the platform generates 'no-engagement' alerts if students have not engaged with any of the data sources measured for 14…
Descriptors: Learning Analytics, At Risk Students, Identification, Higher Education