NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Robin Clausen – Grantee Submission, 2024
Early warning systems (EWS) using analytical tools that have been trained against prior years' data, can reliably predict dropout risk in individual students so that educators may intervene early to help avert this from happening. Risk profiles for dropouts aren't always useful since students often do not conform to the profiles. Researchers with…
Descriptors: Early Intervention, Predictor Variables, Potential Dropouts, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Dahir Abdi Ali; Ali Mohamud Hussein – Journal of Applied Research in Higher Education, 2024
Purpose: The main purpose of this study is to evaluate the extent of dropout students and identify the relationship between risk factors of dropout and the survival time of students. Design/methodology/approach: The Kaplan-Meier estimator (KM), also known as the product-limit technique, is a nonparametric model function that is commonly used in…
Descriptors: Foreign Countries, College Students, At Risk Students, Potential Dropouts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Roberts, Nicola – Journal of Further and Higher Education, 2023
Globally, statistical analyses have found a range of variables that predict the odds of first-year students failing to progress at their Higher Education Institution (HEI). Some of these studies have included students from a range of disciplines. Yet despite the rise in the number of criminology students in HEIs in the UK, little statistical…
Descriptors: Predictor Variables, Academic Achievement, Academic Failure, College Freshmen
Peer reviewed Peer reviewed
Direct linkDirect link
Soland, James; Domingue, Benjamin; Lang, David – Teachers College Record, 2020
Background/Context: Early warning indicators (EWI) are often used by states and districts to identify students who are not on track to finish high school, and provide supports/interventions to increase the odds the student will graduate. While EWI are diverse in terms of the academic behaviors they capture, research suggests that indicators like…
Descriptors: Identification, At Risk Students, Potential Dropouts, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gallego, María Gómez; Perez de los Cobos, Alfonso Palazón; Gallego, Juan Cándido Gómez – Education Sciences, 2021
A main goal of the university institution should be to reduce the desertion of its students, in fact, the dropout rate constitutes a basic indicator in the accreditation processes of university centers. Thus, evaluating the cognitive functions and learning skills of students with an increased risk of academic failure can be useful for the adoption…
Descriptors: Identification, At Risk Students, Potential Dropouts, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Jongile, Sonwabo – International Journal on E-Learning, 2022
The identification of predictor variables for students at-risk of dropping out of university has received increased attention in higher education settings internationally concerning the context of origin in which they are developed and the different academic context in which they are introduced, often lacking schema-theoretic perspectives to offer…
Descriptors: Predictor Variables, At Risk Students, Potential Dropouts, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Cannistrà, Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Churchill, Erin D.; Rogers, Margaret R.; Pristawa, Kimberly A. – National Youth-At-Risk Journal, 2021
The Connections Project (Pristawa,2014) is designed to assist school personnel in identifying students at-risk for social-emotional concerns by examining students' perceptions of connectedness with adults and peers in school. Currently used in several states, schools complete the screening measure as part of their use of the Multi-Tiered System of…
Descriptors: High School Students, Middle School Students, Attendance, Discipline
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alvarez, Niurys Lázaro; Callejas, Zoraida; Griol, David – Journal of Technology and Science Education, 2020
We present an educational data analytics case study aimed at the early detection of potential dropout in Computer Engineering studies in Cuba. We have employed institutional data of 456 students and performed several experiments for predicting their permanency into three (promotion, repetition, and dropout) or two classes (promoting, not…
Descriptors: Foreign Countries, College Students, Computer Science Education, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Berzenski, Sara R. – Journal of College Student Retention: Research, Theory & Practice, 2021
This study examined graduation and persistence among social and behavioral science students at a regional comprehensive university. Hazard analyses identified predictors of student trajectories, times at which predictors were more or less impactful, and interactions between predictors such that particular risk factors were more detrimental for…
Descriptors: Graduation, Potential Dropouts, Predictor Variables, Academic Persistence
Peer reviewed Peer reviewed
Direct linkDirect link
Davidson, William B.; Beck, Hall P. – College Student Journal, 2021
The purpose of this investigation was to develop an ultra-short questionnaire that reliably predicted re-enrollment. Two binary stepwise logistic regressions were performed using re-enrollment status as the criterion. The first regression, conducted with a subsample of 4619 undergraduates, reduced 32 items drawn from the College Persistence…
Descriptors: Questionnaires, Test Construction, Identification, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Kemper, Lorenz; Vorhoff, Gerrit; Wigger, Berthold U. – European Journal of Higher Education, 2020
We perform two approaches of machine learning, logistic regressions and decision trees, to predict student dropout at the Karlsruhe Institute of Technology (KIT). The models are computed on the basis of examination data, i.e. data available at all universities without the need of specific collection. Therefore, we propose a methodical approach…
Descriptors: Foreign Countries, Predictor Variables, Potential Dropouts, School Holding Power
Slaughter, Austin; Neild, Ruth Curran; Crofton, Molly – Philadelphia Education Research Consortium, 2018
Ninth grade is a critical juncture for students--and can be a jarring transition. Even students a strong track record in the middle grades can experience academic difficulty, and those who enter high school with poor course grades, weak attendance, or behavior problems are especially at risk. An early misstep can have lasting implications:…
Descriptors: High School Students, Grade 9, At Risk Students, Potential Dropouts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rowtho, Vikash – Higher Education Studies, 2017
Undergraduate student dropout is gradually becoming a global problem and the 39 Small Islands Developing States (SIDS) are no exception to this trend. The purpose of this research was to develop a method that can be used for early detection of students who are at-risk of performing poorly in their undergraduate studies. A sample of 279 students…
Descriptors: Foreign Countries, Undergraduate Students, Identification, At Risk Students
Previous Page | Next Page »
Pages: 1  |  2