NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Leszczensky, Lars; Wolbring, Tobias – Sociological Methods & Research, 2022
Does "X" affect "Y"? Answering this question is particularly difficult if reverse causality is looming. Many social scientists turn to panel data to address such questions of causal ordering. Yet even in longitudinal analyses, reverse causality threatens causal inference based on conventional panel models. Whereas the…
Descriptors: Attribution Theory, Causal Models, Comparative Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Arel-Bundock, Vincent – Sociological Methods & Research, 2022
Qualitative comparative analysis (QCA) is an influential methodological approach motivated by set theory and boolean logic. QCA proponents have developed algorithms to analyze quantitative data, in a bid to uncover necessary and sufficient conditions where causal relationships are complex, conditional, or asymmetric. This article uses computer…
Descriptors: Comparative Analysis, Qualitative Research, Attribution Theory, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Burke; Russo, Federica; Schoonenboom, Judith – AERA Online Paper Repository, 2017
This paper provides the first mixed methods theory of causation. According to the theory, the researcher must carefully construct a causal mosaic for each research study, articulating what is causally relevant given his/her research questions, purposes, method(s), methodology(ies), paradigms(s), and resources. To engage in this "mixed…
Descriptors: Mixed Methods Research, Correlation, Causal Models, Attribution Theory
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Connelly, Brian S.; Sackett, Paul R.; Waters, Shonna D. – Personnel Psychology, 2013
Organizational and applied sciences have long struggled with improving causal inference in quasi-experiments. We introduce organizational researchers to propensity scoring, a statistical technique that has become popular in other applied sciences as a means for improving internal validity. Propensity scoring statistically models how individuals in…
Descriptors: Quasiexperimental Design, Control Groups, Inferences, Research Methodology