Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Automation | 7 |
Artificial Intelligence | 6 |
Natural Language Processing | 4 |
Computer Assisted Testing | 3 |
Algorithms | 2 |
Computer Interfaces | 2 |
Documentation | 2 |
Educational Technology | 2 |
English | 2 |
Essays | 2 |
French | 2 |
More ▼ |
Author
Danielle S. McNamara | 7 |
Mihai Dascalu | 7 |
Stefan Ruseti | 5 |
Andreea Dutulescu | 2 |
Ionut Paraschiv | 2 |
Amy M. Johnson | 1 |
Cecile A. Perret | 1 |
Denis Iorga | 1 |
Kathryn S. McCarthy | 1 |
Laura K. Allen | 1 |
Renu Balyan | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Speeches/Meeting Papers | 4 |
Journal Articles | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Andreea Dutulescu; Stefan Ruseti; Denis Iorga; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
The process of generating challenging and appropriate distractors for multiple-choice questions is a complex and time-consuming task. Existing methods for an automated generation have limitations in proposing challenging distractors, or they fail to effectively filter out incorrect choices that closely resemble the correct answer, share synonymous…
Descriptors: Multiple Choice Tests, Artificial Intelligence, Attention, Natural Language Processing

Andreea Dutulescu; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Assessing the difficulty of reading comprehension questions is crucial to educational methodologies and language understanding technologies. Traditional methods of assessing question difficulty rely frequently on human judgments or shallow metrics, often failing to accurately capture the intricate cognitive demands of answering a question. This…
Descriptors: Difficulty Level, Reading Tests, Test Items, Reading Comprehension
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Robert-Mihai Botarleanu; Mihai Dascalu; Scott Andrew Crossley; Danielle S. McNamara – Grantee Submission, 2022
The ability to express yourself concisely and coherently is a crucial skill, both for academic purposes and professional careers. An important aspect to consider in writing is an adequate segmentation of ideas, which in turn requires a proper understanding of where to place paragraph breaks. However, these decisions are often performed…
Descriptors: Paragraph Composition, Text Structure, Automation, Identification
Stefan Ruseti; Mihai Dascalu; Amy M. Johnson; Danielle S. McNamara; Renu Balyan; Kathryn S. McCarthy; Stefan Trausan-Matu – Grantee Submission, 2018
Summarization enhances comprehension and is considered an effective strategy to promote and enhance learning and deep understanding of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation requires a lot of effort and time. Although the need for automated support is stringent, there are only a…
Descriptors: Documentation, Artificial Intelligence, Educational Technology, Writing (Composition)
Danielle S. McNamara; Laura K. Allen; Scott A. Crossley; Mihai Dascalu; Cecile A. Perret – Grantee Submission, 2017
Language is of central importance to the field of education because it is a conduit for communicating and understanding information. Therefore, researchers in the field of learning analytics can benefit from methods developed to analyze language both accurately and efficiently. Natural language processing (NLP) techniques can provide such an…
Descriptors: Natural Language Processing, Learning Analytics, Educational Technology, Automation