Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 12 |
Descriptor
Source
Author
Daniel F. McCaffrey | 2 |
Jessica Nastal | 2 |
Jill Burstein | 2 |
Lynette Hazelton | 2 |
Norbert Elliot | 2 |
Alexandron, Giora | 1 |
Allen, Laura K. | 1 |
Ariely, Moriah | 1 |
Boles, Wageeh | 1 |
Clayton Cohn | 1 |
Cropley, David H. | 1 |
More ▼ |
Publication Type
Reports - Research | 10 |
Journal Articles | 9 |
Collected Works - Proceedings | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Adult Education | 2 |
Two Year Colleges | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
More ▼ |
Audience
Location
Pennsylvania | 3 |
Germany | 2 |
Illinois | 2 |
Asia | 1 |
Australia | 1 |
Brazil | 1 |
Canada | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Elisabeth Bauer; Michael Sailer; Frank Niklas; Samuel Greiff; Sven Sarbu-Rothsching; Jan M. Zottmann; Jan Kiesewetter; Matthias Stadler; Martin R. Fischer; Tina Seidel; Detlef Urhahne; Maximilian Sailer; Frank Fischer – Journal of Computer Assisted Learning, 2025
Background: Artificial intelligence, particularly natural language processing (NLP), enables automating the formative assessment of written task solutions to provide adaptive feedback automatically. A laboratory study found that, compared with static feedback (an expert solution), adaptive feedback automated through artificial neural networks…
Descriptors: Artificial Intelligence, Feedback (Response), Computer Simulation, Natural Language Processing
Marrone, Rebecca; Cropley, David H.; Wang, Z. – Creativity Research Journal, 2023
Creativity is now accepted as a core 21st-century competency and is increasingly an explicit part of school curricula around the world. Therefore, the ability to assess creativity for both formative and summative purposes is vital. However, the "fitness-for-purpose" of creativity tests has recently come under scrutiny. Current creativity…
Descriptors: Automation, Evaluation Methods, Creative Thinking, Mathematics Education
Ariely, Moriah; Nazaretsky, Tanya; Alexandron, Giora – International Journal of Artificial Intelligence in Education, 2023
Machine learning algorithms that automatically score scientific explanations can be used to measure students' conceptual understanding, identify gaps in their reasoning, and provide them with timely and individualized feedback. This paper presents the results of a study that uses Hebrew NLP to automatically score student explanations in Biology…
Descriptors: Artificial Intelligence, Algorithms, Natural Language Processing, Hebrew
Moriah Ariely; Tanya Nazaretsky; Giora Alexandron – Journal of Research in Science Teaching, 2024
One of the core practices of science is constructing scientific explanations. However, numerous studies have shown that constructing scientific explanations poses significant challenges to students. Proper assessment of scientific explanations is costly and time-consuming, and teachers often do not have a clear definition of the educational goals…
Descriptors: Biology, Automation, Individualized Instruction, Science Instruction
Somers, Rick; Cunningham-Nelson, Samuel; Boles, Wageeh – Australasian Journal of Educational Technology, 2021
In this study, we applied natural language processing (NLP) techniques, within an educational environment, to evaluate their usefulness for automated assessment of students' conceptual understanding from their short answer responses. Assessing understanding provides insight into and feedback on students' conceptual understanding, which is often…
Descriptors: Natural Language Processing, Student Evaluation, Automation, Feedback (Response)
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Lynette Hazelton; Jessica Nastal; Norbert Elliot; Jill Burstein; Daniel F. McCaffrey – Journal of Response to Writing, 2021
In writing studies research, automated writing evaluation technology is typically examined for a specific, often narrow purpose: to evaluate a particular writing improvement measure, to mine data for changes in writing performance, or to demonstrate the effectiveness of a single technology and accompanying validity arguments. This article adopts a…
Descriptors: Formative Evaluation, Writing Evaluation, Automation, Natural Language Processing
Lynette Hazelton; Jessica Nastal; Norbert Elliot; Jill Burstein; Daniel F. McCaffrey – Grantee Submission, 2021
In writing studies research, automated writing evaluation technology is typically examined for a specific, often narrow purpose: to evaluate a particular writing improvement measure, to mine data for changes in writing performance, or to demonstrate the effectiveness of a single technology and accompanying validity arguments. This article adopts a…
Descriptors: Formative Evaluation, Writing Evaluation, Automation, Natural Language Processing
Vittorini, Pierpaolo; Menini, Stefano; Tonelli, Sara – International Journal of Artificial Intelligence in Education, 2021
Massive open online courses (MOOCs) provide hundreds of students with teaching materials, assessment tools, and collaborative instruments. The assessment activity, in particular, is demanding in terms of both time and effort; thus, the use of artificial intelligence can be useful to address and reduce the time and effort required. This paper…
Descriptors: Artificial Intelligence, Formative Evaluation, Summative Evaluation, Data
L. Hannah; E. E. Jang; M. Shah; V. Gupta – Language Assessment Quarterly, 2023
Machines have a long-demonstrated ability to find statistical relationships between qualities of texts and surface-level linguistic indicators of writing. More recently, unlocked by artificial intelligence, the potential of using machines to identify content-related writing trait criteria has been uncovered. This development is significant,…
Descriptors: Validity, Automation, Scoring, Writing Assignments
Allen, Laura K.; Likens, Aaron D.; McNamara, Danielle S. – Grantee Submission, 2018
The assessment of argumentative writing generally includes analyses of the specific linguistic and rhetorical features contained in the individual essays produced by students. However, researchers have recently proposed that an individual's ability to flexibly adapt the linguistic properties of their writing may more accurately capture their…
Descriptors: Writing (Composition), Persuasive Discourse, Essays, Language Usage
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers