NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Galit Agmon; Sameer Pradhan; Sharon Ash; Naomi Nevler; Mark Liberman; Murray Grossman; Sunghye Cho – Journal of Speech, Language, and Hearing Research, 2024
Purpose: Multiple methods have been suggested for quantifying syntactic complexity in speech. We compared eight automated syntactic complexity metrics to determine which best captured verified syntactic differences between old and young adults. Method: We used natural speech samples produced in a picture description task by younger (n = 76, ages…
Descriptors: Young Adults, Older Adults, Undergraduate Students, Caregivers
Peer reviewed Peer reviewed
Direct linkDirect link
C. H., Dhawaleswar Rao; Saha, Sujan Kumar – IEEE Transactions on Learning Technologies, 2023
Multiple-choice question (MCQ) plays a significant role in educational assessment. Automatic MCQ generation has been an active research area for years, and many systems have been developed for MCQ generation. Still, we could not find any system that generates accurate MCQs from school-level textbook contents that are useful in real examinations.…
Descriptors: Multiple Choice Tests, Computer Assisted Testing, Automation, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, Brian S.; Lima-Walton, Elia; Brunnert, Kim; Vesey, Winona Burt; Raha, Kaushik – Journal of Applied Testing Technology, 2020
Automatic item generation can rapidly generate large volumes of exam items, but this creates challenges for assembly of exams which aim to include syntactically diverse items. First, we demonstrate a diminishing marginal syntactic return for automatic item generation using a saturation detection approach. This analysis can help users of automatic…
Descriptors: Artificial Intelligence, Automation, Test Construction, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Sanchez-Ferreres, Josep; Delicado, Luis; Andaloussi, Amine Abbab; Burattin, Andrea; Calderon-Ruiz, Guillermo; Weber, Barbara; Carmona, Josep; Padro, Lluis – IEEE Transactions on Learning Technologies, 2020
The creation of a process model is primarily a formalization task that faces the challenge of constructing a syntactically correct entity, which accurately reflects the semantics of reality, and is understandable to the model reader. This article proposes a framework called "Model Judge," focused toward the two main actors in the process…
Descriptors: Models, Automation, Validity, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Sari, Elif; Han, Turgay – Reading Matrix: An International Online Journal, 2021
Providing both effective feedback applications and reliable assessment practices are two central issues in ESL/EFL writing instruction contexts. Giving individual feedback is very difficult in crowded classes as it requires a great amount of time and effort for instructors. Moreover, instructors likely employ inconsistent assessment procedures,…
Descriptors: Automation, Writing Evaluation, Artificial Intelligence, Natural Language Processing
Danielle S. McNamara; Laura K. Allen; Scott A. Crossley; Mihai Dascalu; Cecile A. Perret – Grantee Submission, 2017
Language is of central importance to the field of education because it is a conduit for communicating and understanding information. Therefore, researchers in the field of learning analytics can benefit from methods developed to analyze language both accurately and efficiently. Natural language processing (NLP) techniques can provide such an…
Descriptors: Natural Language Processing, Learning Analytics, Educational Technology, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bruno, James V.; Cahill, Aoife; Gyawali, Binod – ETS Research Report Series, 2016
We present an annotation scheme for classifying differences in the outputs of syntactic constituency parsers when a gold standard is unavailable or undesired, as in the case of texts written by nonnative speakers of English. We discuss its automated implementation and the results of a case study that uses the scheme to choose a parser best suited…
Descriptors: Documentation, Classification, Differences, Syntax
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Allen, Laura K.; Likens, Aaron D.; McNamara, Danielle S. – Grantee Submission, 2018
The assessment of argumentative writing generally includes analyses of the specific linguistic and rhetorical features contained in the individual essays produced by students. However, researchers have recently proposed that an individual's ability to flexibly adapt the linguistic properties of their writing may more accurately capture their…
Descriptors: Writing (Composition), Persuasive Discourse, Essays, Language Usage
McNamara, Danielle S.; Crossley, Scott A.; Roscoe, Rod – Grantee Submission, 2013
The Writing Pal is an intelligent tutoring system that provides writing strategy training. A large part of its artificial intelligence resides in the natural language processing algorithms to assess essay quality and guide feedback to students. Because writing is often highly nuanced and subjective, the development of these algorithms must…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Writing Instruction, Feedback (Response)
Sousan, William L. – ProQuest LLC, 2010
The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…
Descriptors: Methods, Lexicography, Automation, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Mu, Jin; Stegmann, Karsten; Mayfield, Elijah; Rose, Carolyn; Fischer, Frank – International Journal of Computer-Supported Collaborative Learning, 2012
Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also,…
Descriptors: Semantics, Classification, Syntax, Coding