NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Geerlings, Hanneke; Glas, Cees A. W.; van der Linden, Wim J. – Psychometrika, 2011
An application of a hierarchical IRT model for items in families generated through the application of different combinations of design rules is discussed. Within the families, the items are assumed to differ only in surface features. The parameters of the model are estimated in a Bayesian framework, using a data-augmented Gibbs sampler. An obvious…
Descriptors: Simulation, Intelligence Tests, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Scheerens, Jaap; Luyten, Hans; van den Berg, Stéphanie M.; Glas, Cees A. W. – Educational Research and Evaluation, 2015
As expectations of the economic impact of educational attainment are soaring (Hanushek & Woessmann, 2009) and conjectures about successful national educational reforms (Mourshed, Chijioke, & Barber, 2010) are welcomed by educational policy-makers in many countries, a careful assessment of the empirical evidence for these kinds of claims is…
Descriptors: Foreign Countries, Educational Attainment, Educational Change, Comparative Education
Peer reviewed Peer reviewed
Direct linkDirect link
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)
Peer reviewed Peer reviewed
Glas, Cees A. W.; Meijer, Rob R. – Applied Psychological Measurement, 2003
Presents a Bayesian approach to the evaluation of person fit in item response theory (IRT) models. Works the procedure in detail for the three parameter normal ogive model, but shows that the procedure can be generalized to many other IRT models. (SLD)
Descriptors: Bayesian Statistics, Goodness of Fit, Item Response Theory, Models
Fox, Jean-Paul; Glas, Cees A. W. – 2000
This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved latent variables and using the normal ogive…
Descriptors: Bayesian Statistics, Error of Measurement, Item Response Theory, Predictor Variables
Glas, Cees A. W.; Meijer, Rob R. – 2001
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Descriptors: Bayesian Statistics, Item Response Theory, Markov Processes, Models
Glas, Cees A. W.; van der Linden, Wim J. – 2001
In some areas of measurement item parameters should not be modeled as fixed but as random. Examples of such areas are: item sampling, computerized item generation, measurement with substantial estimation error in the item parameter estimates, and grouping of items under a common stimulus or in a common context. A hierarchical version of the…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Peer reviewed Peer reviewed
Fox, Jean-Paul; Glas, Cees A. W. – Psychometrika, 2001
Imposed a two-level regression model on the ability parameters in an item response theory (IRT) model. Uses a simulation study and an empirical data set to show that the parameters of the two-parameter normal ogive model and the multilevel model can be estimated in a Bayesian framework using Gibbs sampling. (SLD)
Descriptors: Ability, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Beguin, Anton A.; Glas, Cees A. W. – 1998
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization to a model with multidimensional ability parameters are discussed. The procedure is a generalization of a procedure by J. Albert (1992) for estimating the two-parameter normal ogive model. The procedure will support multiple samples from multiple…
Descriptors: Ability, Bayesian Statistics, Estimation (Mathematics), Item Response Theory
Glas, Cees A. W.; Vos, Hans J. – 1998
A version of sequential mastery testing is studied in which response behavior is modeled by an item response theory (IRT) model. First, a general theoretical framework is sketched that is based on a combination of Bayesian sequential decision theory and item response theory. A discussion follows on how IRT based sequential mastery testing can be…
Descriptors: Adaptive Testing, Bayesian Statistics, Item Response Theory, Mastery Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Hendrawan, Irene; Glas, Cees A. W.; Meijer, Rob R. – Applied Psychological Measurement, 2005
The effect of person misfit to an item response theory model on a mastery/nonmastery decision was investigated. Furthermore, it was investigated whether the classification precision can be improved by identifying misfitting respondents using person-fit statistics. A simulation study was conducted to investigate the probability of a correct…
Descriptors: Probability, Statistics, Test Length, Simulation
Fox, Jean-Paul; Glas, Cees A. W. – 1998
A two-level regression model is imposed on the ability parameters in an item response theory (IRT) model. The advantage of using latent rather than observed scores as dependent variables of a multilevel model is that this offers the possibility of separating the influence of item difficulty and ability level and modeling response variation and…
Descriptors: Ability, Bayesian Statistics, Difficulty Level, Error of Measurement
Glas, Cees A. W.; Vos, Hans J. – 2000
This paper focuses on a version of sequential mastery testing (i.e., classifying students as a master/nonmaster or continuing testing and administering another item or testlet) in which response behavior is modeled by a multidimensional item response theory (IRT) model. First, a general theoretical framework is outlined that is based on a…
Descriptors: Adaptive Testing, Bayesian Statistics, Classification, Computer Assisted Testing
Glas, Cees A. W.; van der Linden, Wim J. – 2001
To reduce the cost of item writing and to enhance the flexibility of item presentation, items can be generated by item-cloning techniques. An important consequence of cloning is that it may cause variability on the item parameters. Therefore, a multilevel item response model is presented in which it is assumed that the item parameters of a…
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Costs