Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 47 |
Descriptor
Bayesian Statistics | 49 |
Middle School Students | 24 |
Grade 8 | 20 |
Models | 18 |
Comparative Analysis | 13 |
Foreign Countries | 13 |
Mathematics Achievement | 12 |
Mathematics Tests | 11 |
Computation | 10 |
Grade 7 | 10 |
Item Response Theory | 10 |
More ▼ |
Source
Author
Sao Pedro, Michael | 3 |
Barnes, Tiffany, Ed. | 2 |
Gobert, Janice | 2 |
Huang, Hung-Yu | 2 |
Huang, Xudong | 2 |
Lester, James C. | 2 |
Mott, Bradford W. | 2 |
Romero, Cristobal, Ed. | 2 |
Rowe, Jonathan P. | 2 |
Wang, Wen-Chung | 2 |
Xie, Charles | 2 |
More ▼ |
Publication Type
Reports - Research | 41 |
Journal Articles | 32 |
Speeches/Meeting Papers | 6 |
Collected Works - Proceedings | 3 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Education Level
Junior High Schools | 49 |
Middle Schools | 49 |
Secondary Education | 48 |
Elementary Education | 30 |
Grade 8 | 23 |
High Schools | 13 |
Grade 7 | 12 |
Grade 9 | 7 |
Higher Education | 7 |
Postsecondary Education | 7 |
Elementary Secondary Education | 6 |
More ▼ |
Audience
Location
Pennsylvania | 4 |
Massachusetts | 3 |
Taiwan | 3 |
Netherlands | 2 |
North Carolina | 2 |
Spain | 2 |
Africa | 1 |
Arizona (Phoenix) | 1 |
Australia | 1 |
Botswana | 1 |
Brazil | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |
Rehab AlHakmani; Yanyan Sheng – Large-scale Assessments in Education, 2024
The focus of this study is to use the mixture item response theory (MixIRT) model while implementing the no-U-turn sampler as a technique for investigating the presence of latent classes (i.e., subpopulations) among eighth-grade students who were administered TIMSS 2019 mathematics subtest in paper format from the gulf cooperation council (GCC)…
Descriptors: International Assessment, Item Response Theory, Grade 8, Middle School Students
Kyosuke Takami; Brendan Flanagan; Yiling Dai; Hiroaki Ogata – International Journal of Distance Education Technologies, 2024
Explainable recommendation, which provides an explanation about why a quiz is recommended, helps to improve transparency, persuasiveness, and trustworthiness. However, little research examined the effectiveness of the explainable recommender, especially on academic performance. To survey its effectiveness, the authors evaluate the math academic…
Descriptors: Bayesian Statistics, Epistemology, Mathematics Achievement, Artificial Intelligence
Hsu, Chia-Ling; Chen, Yi-Hsin; Wu, Yi-Jhen – Practical Assessment, Research & Evaluation, 2023
Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models (DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical attribute structures via Bayesian…
Descriptors: Bayesian Statistics, Computation, International Assessment, Achievement Tests
Wu, Lin-Jung; Chang, Kuo-En – Interactive Learning Environments, 2023
To achieve adaptive learning, a dynamic assessment system equipped with a cognitive diagnosis was developed for this study, which adopts a three-stage model of diagnosis-intervention-assessment. To examine how this system influenced spatial geometry learning, the study used a quasi-experimental method to investigate student learning outcomes…
Descriptors: Cognitive Measurement, Alternative Assessment, Spatial Ability, Geometry
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Chi-Jung Sui; Miao-Hsuan Yen; Chun-Yen Chang – Education and Information Technologies, 2024
This study examined the effects of a technology-enhanced intervention on the self-regulation of 262 eighth-grade students, employing information and communication technology (ICT) and web-based self-assessment tools set against science learning. The data were analyzed using Bayesian structural equation modeling to unravel the intricate…
Descriptors: Technology Uses in Education, Independent Study, Middle School Students, Grade 8
Piech, Chris; Bumbacher, Engin; Davis, Richard – International Educational Data Mining Society, 2020
One crucial function of a classroom, and a school more generally, is to prepare students for future learning. Students should have the capacity to learn new information and to acquire new skills. This ability to "learn" is a core competency in our rapidly changing world. But how do we measure ability to learn? And how can we measure how…
Descriptors: Academic Ability, Measurement, Middle School Students, Achievement Gains
Jiang, Shiyan; Huang, Xudong; Sung, Shannon H.; Xie, Charles – Research in Science Education, 2023
Learning analytics, referring to the measurement, collection, analysis, and reporting of data about learners and their contexts in order to optimize learning and the environments in which it occurs, is proving to be a powerful approach for understanding and improving science learning. However, few studies focused on leveraging learning analytics…
Descriptors: Learning Analytics, Hands on Science, Science Education, Laboratory Safety
Min, Wookhee; Frankosky, Megan H.; Mott, Bradford W.; Rowe, Jonathan P.; Smith, Andy; Wiebe, Eric; Boyer, Kristy Elizabeth; Lester, James C. – IEEE Transactions on Learning Technologies, 2020
A distinctive feature of game-based learning environments is their capacity for enabling stealth assessment. Stealth assessment analyzes a stream of fine-grained student interaction data from a game-based learning environment to dynamically draw inferences about students' competencies through evidence-centered design. In evidence-centered design,…
Descriptors: Game Based Learning, Student Evaluation, Artificial Intelligence, Models
Xing, Wanli; Li, Chenglu; Chen, Guanhua; Huang, Xudong; Chao, Jie; Massicotte, Joyce; Xie, Charles – Journal of Educational Computing Research, 2021
Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide…
Descriptors: Engineering Education, Design, Feedback (Response), Student Evaluation
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Coux, Mickael; Xiao, ZhiMin; Shkedy, Ziv; Kasim, Adetayo – Journal of Experimental Education, 2022
Educational stakeholders are keen to know the magnitude and importance of different interventions. However, the way evidence is communicated to support understanding of the effectiveness of an intervention is controversial. Typically studies in education have used the standardised mean difference as a measure of the impact of interventions. This…
Descriptors: Program Effectiveness, Intervention, Multivariate Analysis, Bayesian Statistics
Forrow, Lauren; Starling, Jennifer; Gill, Brian – Regional Educational Laboratory Mid-Atlantic, 2023
The Every Student Succeeds Act requires states to identify schools with low-performing student subgroups for Targeted Support and Improvement or Additional Targeted Support and Improvement. Random differences between students' true abilities and their test scores, also called measurement error, reduce the statistical reliability of the performance…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
The "Stabilizing Subgroup Proficiency Results to Improve the Identification of Low-Performing Schools" study used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI)…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
DiCerbo, Kristen – Learning, Media and Technology, 2016
The volume of data that can be captured and stored from students' everyday interactions with digital environments allows for the creation of models of student knowledge, skills, and attributes unobtrusively. However, models and techniques for transforming these data into information that is useful for educators have not been established. This…
Descriptors: Bayesian Statistics, Educational Technology, Electronic Learning, Learning Processes