Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Author
Levy, Roy | 4 |
Mislevy, Robert J. | 3 |
Johnson, Matthew S. | 2 |
Sinharay, Sandip | 2 |
Agarwal, Deepak | 1 |
Almond, Russell | 1 |
Baker, Ryan S. | 1 |
Berenson, Mark | 1 |
Chung, Hwan | 1 |
Dibello, Lou | 1 |
Fahrmeir, Ludwig | 1 |
More ▼ |
Publication Type
Reports - Descriptive | 21 |
Journal Articles | 14 |
Speeches/Meeting Papers | 2 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
More ▼ |
Audience
Students | 2 |
Researchers | 1 |
Teachers | 1 |
Location
Australia | 1 |
Germany | 1 |
Sweden (Stockholm) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Stewart, Wayne; Stewart, Sepideh – PRIMUS, 2014
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Descriptors: Markov Processes, Monte Carlo Methods, College Mathematics, Mathematics Instruction
Rindskopf, David; Shadish, William; Hedges, Larry – Society for Research on Educational Effectiveness, 2012
Data from single case designs (SCDs) have traditionally been analyzed by visual inspection rather than statistical models. As a consequence, effect sizes have been of little interest. Lately, some effect-size estimators have been proposed, but most are either (i) nonparametric, and/or (ii) based on an analogy incompatible with effect sizes from…
Descriptors: Intervention, Effect Size, Bayesian Statistics, Research Design
Koskinen, Johan; Stenberg, Sten-Ake – Journal of Educational and Behavioral Statistics, 2012
When studying educational aspirations of adolescents, it is unrealistic to assume that the aspirations of pupils are independent of those of their friends. Considerable attention has also been given to the study of peer influence in the educational and behavioral literature. Typically, in empirical studies, the friendship networks have either been…
Descriptors: Foreign Countries, Bayesian Statistics, Models, Friendship
Levy, Roy – National Center for Research on Evaluation, Standards, and Student Testing (CRESST), 2014
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Descriptors: Video Games, Educational Games, Bayesian Statistics, Observation
Okada, Kensuke; Shigemasu, Kazuo – Applied Psychological Measurement, 2009
Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…
Descriptors: Bayesian Statistics, Multidimensional Scaling, Computation, Computer Software
Chung, Hwan; Walls, Theodore A.; Park, Yousung – Psychometrika, 2007
Latent transition models increasingly include covariates that predict prevalence of latent classes at a given time or transition rates among classes over time. In many situations, the covariate of interest may be latent. This paper describes an approach for handling both manifest and latent covariates in a latent transition model. A Bayesian…
Descriptors: Markov Processes, Academic Achievement, Models, Case Studies
Fahrmeir, Ludwig; Raach, Alexander – Psychometrika, 2007
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Descriptors: Markov Processes, Social Sciences, Monte Carlo Methods, Bayesian Statistics
Johnson, Matthew S.; Sinharay, Sandip – Applied Psychological Measurement, 2005
For complex educational assessments, there is an increasing use of item families, which are groups of related items. Calibration or scoring in an assessment involving item families requires models that can take into account the dependence structure inherent among the items that belong to the same item family. This article extends earlier works in…
Descriptors: National Competency Tests, Markov Processes, Bayesian Statistics
Fox, Jean-Paul – 2002
A structural multilevel model is presented in which some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal politicos response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Previous Page | Next Page ยป
Pages: 1 | 2