Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 14 |
Models | 9 |
Learning Processes | 8 |
Data Analysis | 7 |
Intelligent Tutoring Systems | 7 |
Prediction | 6 |
Item Response Theory | 4 |
Academic Achievement | 3 |
Accuracy | 3 |
Classification | 3 |
Comparative Analysis | 3 |
More ▼ |
Source
Journal of Educational Data… | 14 |
Author
Galyardt, April | 2 |
Goldin, Ilya | 2 |
Anirudhan Badrinath | 1 |
Baraniuk, Richard | 1 |
Behrens, John T. | 1 |
Benson, Martin | 1 |
Brandon Zhang | 1 |
Calico, Tiago | 1 |
Chen, Fu | 1 |
Chi, Min | 1 |
Chu, Man-Wai | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 14 |
Numerical/Quantitative Data | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 2 |
Middle Schools | 2 |
Grade 5 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
North Carolina | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Delianidi, Marina; Diamantaras, Konstantinos – Journal of Educational Data Mining, 2023
Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a suitable approach for student performance prediction. We propose such a neural network architecture containing two modules: (i) a…
Descriptors: Academic Achievement, Prediction, Cognitive Measurement, Bayesian Statistics
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Mohammad M. Khajah – Journal of Educational Data Mining, 2024
Bayesian Knowledge Tracing (BKT) is a popular interpretable computational model in the educational mining community that can infer a student's knowledge state and predict future performance based on practice history, enabling tutoring systems to adaptively select exercises to match the student's competency level. Existing BKT implementations do…
Descriptors: Students, Bayesian Statistics, Intelligent Tutoring Systems, Cognitive Development
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Cui, Yang; Chu, Man-Wai; Chen, Fu – Journal of Educational Data Mining, 2019
Digital game-based assessments generate student process data that is much more difficult to analyze than traditional assessments. The formative nature of game-based assessments permits students, through applying and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate feedback, and as a result,…
Descriptors: Educational Games, Student Evaluation, Data Analysis, Bayesian Statistics
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Rupp, Andre A.; Levy, Roy; Dicerbo, Kristen E.; Sweet, Shauna J.; Crawford, Aaron V.; Calico, Tiago; Benson, Martin; Fay, Derek; Kunze, Katie L.; Mislevy, Robert J.; Behrens, John T. – Journal of Educational Data Mining, 2012
In this paper we describe the development and refinement of "evidence rules" and "measurement models" within the "evidence model" of the "evidence-centered design" (ECD) framework in the context of the "Packet Tracer" digital learning environment of the "Cisco Networking Academy." Using…
Descriptors: Computer Networks, Evidence Based Practice, Design, Instructional Design